59 resultados para Enzims microbians
Resumo:
El presente grupo ha recorrido ya un largo camino trabajando en el estudio de sistemas enzimáticos, diseño y simulación de biorreactores con enzimas en soluble e inmovilizadas, comprobando la seria dificultad de separación y eliminación de las mismas en la etapa final del proceso, así como las problemáticas de preparación y uso de las enzimas inmovilizadas en los mas diversos tipos de soportes. En este estudio se investigo la aplicación de ultrafiltración y ósmosis inversa en soluciones modelo de zumos para su clarificación y concentración, también en la eliminación de melanoidinas en concentrados de zumos. A partir de esta investigación se elaboraron membranas con enzimas pectinoliticas inmovilizadas. Al igual que se determino las condiciones óptimas de aplicación en sistemas modelo a escala de laboratorio y planta piloto.
Resumo:
En aquest treball s’ha analitzat la relació estructura-funció dels enzims CPT1, o Carnitina palmitoïltransferasa 1, que catalitza la reacció de transesterificació dels àcids grassos de cadena llarga a acil-carnitines, per tal que puguin accedir a la matriu mitocondrial i ser oxidats. Aquest enzim es troba estrictament regulat per malonil-CoA, primer intermediari de la síntesi d’àcids grassos, establint-se així una regulació coordinada entre la formació i la degradació de grasses. S’han estudiat els tres isotips de CPT1 descrits fins al moment: CPT1A, CPT1B i CPT1C. Mitjançant l’expressió heteròloga de mutants de CPT1A de rata i CPT1B de porc en el llevat P. pastoris, s’ha estudiat l’efecte sobre la inhibició per malonil-CoA de petits canvis en la seva estructura, per tal de trobar una relació entre la seva funció enzimàtica i la disposició conformacional de la proteïna. Segons els resultats obtinguts, el residu Glu590 de CPT1A de rata estaria impedint la unió de l’inhibidor, mentre que el residu Met593 estaria afavorint aquesta unió. Els estudis amb l’enzim CPT1B de porc demostraren l’existència d’un determinant positiu per la sensibilitat al malonil-CoA en els primers 18 residus de la proteïna, i definiren la posició Glu17 com la responsable de l’alta afinitat a la carnitina i la baixa sensibilitat a la inhibició per malonil-CoA (8). Es clonà i caracteritzà la regió promotora del gen de CPT1C humana, amb la intenció d’analitzar la funcionalitat de putatius elements de resposta identificats in silico. Cap dels elements estudiats resultà ser funcional in vivo. A més, es demostrà que la manca d’activitat catalítica de la proteïna no és deguda a l’extensió C-terminal que presenta respecte els isotips A i B, tot i presentar un alt percentatge d’identitat de seqüència. S’ha amplificat una isoforma humana de CPT1C (Pubmed Acc. Num. AK299866), corresponent a la regió carboxiterminal de la proteïna, que es pretén utilitzar per obtenir el primer cristall de la part soluble d’una proteïna CPT1.
Resumo:
: To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*4001 carriage with HIV lipodystrophy syndrome (HALS). 336 patients, 187 with HALS and 149 without HALS, and 72 controls were recruited. HALS was associated with the presence of a low expression, thymidylate synthase (TS) genotype polymorphism. Methylene-tetrahydrofolate reductase (MTHFR) gene polymorphisms and HLA-B*4001 carriage were not associated with HALS or d4T-TP intracellular levels. In conclusion HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*4001 carriage.
Resumo:
Food safety today is conditiones by the implementation of new Tecnologies for food preservation based on mild treatments and mínimum process, Novel foods, severe restrictions in the toxicològic profile of chemical preservatives, And the drastic limitation /prohibition of antibiotics, and as a consequence, by the New emergint pathogens or by the increase of classical food-borne pathogens. Biopreservatives appear within this context with strong expectations, because thei are safe microorganisms of ten isolated from foods, chemical compounds of natural origin -antimicrobial peptides and proteins, botanical extracts, enzymes- and sintetic compounds based on natural structures, but less toxic and more eficients, like the amtimicrobial peptides. Among the microbial biopreservatives, lactic acid bacteria have shown great possibilities in the preservation of cured meat products, ready to eat fresh fruit and vegetables, as well as to decrease microbial spoilage in food by products before processing for valorization. Our laboratory has performed an extense survey of the microbiological quality of fresh fruit and vegetables, and of ready-to-eat products, and have detect low levels, but significant of Salmonella sp., E. coli and Listeria spp., including L.monocytogenes, in retail markets and Supermarkets of Catalonia. Due to this reason, we started a project consisting of Developing application of lactic acid bacteria (LAB) obtained from these products, as biopreservatives. LAB were abundant in ready-to-eat fresh fruits and vegetables, specially in germinated seeds. From these products we obtained strains of Leuconostoc, Lactobacillus and Weissella, producing bacteriocins and with a Significant activity of control of L.monocytogenes in fresh apple and cut salad. Ather strains were efective in the inhibition of fungal rot during postharvest caused by Penicillium expansum
Resumo:
Introduction: Breastfeeding effects on cognition are attributed to long-chain polyunsaturated fatty acids (LC-PUFAs), but controversy persists. Genetic variation in fatty acid desaturase (FADS) and elongase (ELOVL) enzymes has been overlooked when studying the effects of LC-PUFAs supply on cognition. We aimed to: 1) to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum; 2) to analyze whether these maternal variants are related to child cognition; and 3) to assess whether children's variants modify breastfeeding effects on cognition. Methods: Data come from two population-based birth cohorts (n = 400 mother-child pairs from INMA-Sabadell; and n = 340 children from INMA-Menorca). LC-PUFAs were measured in 270 colostrum samples from INMA-Sabadell. Tag SNPs were genotyped both in mothers and children (13 in the FADS cluster, 6 in ELOVL2, and 7 in ELOVL5). Child cognition was assessed at 14 mo and 4 y using the Bayley Scales of Infant Development and the McCarthy Scales of Children"s Abilities, respectively. Results: Children of mothers carrying genetic variants associated with lower FADS1 activity (regulating AA and EPA synthesis), higher FADS2 activity (regulating DHA synthesis), and with higher EPA/AA and DHA/AA ratios in colostrum showed a significant advantage in cognition at 14 mo (3.5 to 5.3 points). Not being breastfed conferred an 8- to 9-point disadvantage in cognition among children GG homozygote for rs174468 (low FADS1 activity) but not among those with the A allele. Moreover, not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs2397142 (low ELOVL5 activity), but not among those carrying the G allele. Conclusion: Genetically determined maternal supplies of LC-PUFAs during pregnancy and lactation appear to be crucial for child cognition. Breastfeeding effects on cognition are modified by child genetic variation in fatty acid desaturase and elongase enzymes.
Resumo:
Background: Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. Methodology: Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis , a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. Conclusion: SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.
Resumo:
As a constituent of selenoproteins, selenium (Se) is considered an essential element for human health.The main way that Se enters the body is via the consumption of vegetables, whose concentration of thiselement depends on soil Se content. We grew cabbage, lettuce, chard and parsley, in peat enriched in Seby means of the additive Selcote Ultra®and Na2SeO3and Na2SeO4. Total Se in plants was determinedby acidic digestion and Se speciation by an enzymatic extraction. Both were measured by ICP/MS. Theconcentration ranges were between 0.1 mg Se kg−1and 30 mg Se kg−1for plants grown in Selcote Ultra®media, and between 0.4 mg Se kg−1and 1606 mg Se kg−1for those grown in peat enriched with Se sodiumsalts. We found Se (IV), Se (VI) and SeMet in all the extracts. Peat fortified with Selcote Ultra®gave slightlyhigher Se concentration than natural content values. For plants grown with selenium sodium salts, Secontent increases with the Se added and part of the inorganic Se was converted mainly to SeMet. A highSe fortification can damage or inhibit plant growth. Cabbage showed the greatest tolerance to Se.
Resumo:
The validation process of an affinity chromatography on heparine-Sepharose method is described.
Resumo:
Objectives: Gelatinases (MMP2 and MMP9) are expressed in giant-cell arteritis (GCA) and are thought to play a role in vessel disruption. However, their activation status and enzymatic activity have not been evaluated. Our aim was to investigate the distribution and proteolytic activity of gelatinases in GCA lesions at different stages. Methods: Expression of MMP2, MMP9, MMP2-activator MMP14 and their natural inhibitors TIMP1 and TIMP2 was determined by real-time PCR and immunohistochemistry in temporal artery sections from 46 patients and 12 controls. MMP activation status and enzymatic activity were assessed by gelatin and film in situ zymography. Results: Vascular smooth muscle cells from normal specimens constitutively expressed pro-MMP2 and its inhibitor TIMP2 with no resulting proteolytic activity. In GCA MMP2, MMP9 and MMP14 were strongly expressed in their active form by infiltrating leucocytes. Inflamed arteries also expressed TIMP1 and TIMP2. However, the MMP9/TIMP1 and MMP2/TIMP2 ratios were higher in patients compared with controls, indicating an increased proteolytic balance in GCA which was confirmed by in situ zymography. Maximal gelatinase expression and activity occurred at the granulomatous areas surrounding the internal elastic lamina (IEL). Myointimal cells also expressed MMPs and exhibited proteolytic activity, suggesting a role for gelatinases in vascular remodelling and repair. Conclusions: GCA lesions show intense expression of gelatinases. Activators and inhibitors are regulated to yield enhanced gelatinase activation and proteolytic activity. Distribution of expression and proteolytic activity suggests that gelatinases have a major role not only in the progression of inflammatory infiltrates and vessel destruction but also in vessel repair.
Resumo:
A method for the measurement of carbamoyl-phosphate synthetase I activity in animal tissues has been developed using the livers of rats under normal and hyperproteic diets. The method is based on the incorporation of 14C-ammonium bicarbonate to carbamoyl-phosphate in the presence of ATP-Mg and N-acetyl-glutamate. The reaction is stopped by chilling, lowering the pH and adding ethanol. Excess bicarbonate is flushed out under a gentle stream of cold CO2. The only label remaining in the medium was that incorporated into carbamoyl-phosphate, since all 14C-CO2 from bicarbonate was eliminated. The method is rapid and requires only a low pressure supply of CO2 to remove the excess substrate. The reaction is linear up to 10 min using homogenate dilutions of 1:20 to 1:200 (w/v). Rat liver activity was in the range of 89±8 nkat/g. Hyperproteic diet resulted in a significant 1.4-fold increase. The design of the method allows for the processing of multiple samples at the same time, and incubation medium manipulation is unnecessary, since the plastic incubation vial and its contents are finally counted together.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.
Resumo:
Background: Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts. Results: By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified by LC/MS. We found a significant interference of diverse (cocoa and tea-derived) extracts over this method. The interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of unspecific fluorescence was inhibitable by catalase (but not by heat denaturation), suggesting vegetable extract derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts. Conclusions: We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses solve these issues.
Resumo:
Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.
Resumo:
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of a factor (Doa10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.
Resumo:
Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson"s disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6