975 resultados para Enseñanza de la matemática
Resumo:
Reflexión sobre la enseñanza de matemáticas en la enseñanza media y superior, a partir de las cuestiones tratadas en la XIII Reunión de Profesores de Matemáticas, celebrada en Dinamarca, a cargo de la Comisión Internacional para el Estudio y Mejora de la enseñanza de las Matemáticas. Además de ponencias individuales de especialistas en la materia, diversos países presentaron informes, que presentan numerosos rasgos comunes. Se destacan los siguientes: la transformación social experimentada por la enseñanza secundaria debida a la afluencia incesante de alumnos, como consecuencia, la división de la enseñanza media en dos ciclos, inferior y superior, y la subdivisión en diversas ramas, la superación de exámenes intermedios y su sustitución por exámenes de Estado, realizados en forma masiva, la discrepancia entre la preparación científica que reciben loa bachillerea, tanto en bagaje de conocimientos, como en hábitos de trabajo, y las exigencias mínimas que estima necesarias la Universidad para iniciar su labor. Para concluir se reflexiona en torno a la metodología de la matemática moderna, que busca decantarse entre las matemáticas tradicionales o Matemáticas de Base, y los partidarios de unas matemáticas que se renueven, o renovadores.
Resumo:
Se analiza la matemática moderna. Se plantean cuestiones como: ¿qué es la Matemática Moderna? ; ¿es que hay una Matemática Moderna que viene en sustitución de otra antigua?. En realidad el calificativo de moderna se contrapone al de clásica. Se señala que la diferencia entre ambas concepciones de las Matemáticas está más del lado de los métodos y del enfoque de los problemas y del contenido. La Matemática sigue siendo tan práctica que la de la antigüedad, pero a la vez viene enriquecida con un tesoro conceptual por liberación de la carga realista que pesaba sobre ella.
Resumo:
Según un informe de 1956, contar, medir y construir fueron las primeras operaciones matemáticas de la humanidad. La primera raya que el pastor primitivo trazara para representar su primera oveja fue el primer símbolo. Representar, esquematizar, es abstraerse es prescindir de cualidades accesorias para quedarse con la esencia. Los conceptos matemáticos lo fueron en su origen por accidente para ser proyectados de nuevo al campo de la realidad, es decir, la matemática fue antes aplicada que pura. Y la mente matemática libre ya de las trabas con el mundo físico del que recibió los impulsos iniciales, teje y combina, abstrae y generaliza, se ensancha y progresa, lo mismo en sus ramas y frutos que en sus raíces. En definitiva, la matemática es la ciencia más apta para practicar la autocorrección y para educar ,de este modo, la objetividad de opiniones y la firmeza de conductas.
Resumo:
Con la confluencia de las dos líneas evolutivas de la matemática y la didáctica llegamos al momento actual: de un lado la matemática hacia abstracciones cada vez más formalistas; de otro, la didáctica evoluciona exigiendo creación en el aprendizaje. Finalmente, la técnica moderna utiliza recursos matemáticos cada vez más avanzados y ante esta situación la tarea del profesor de matemáticas es cada vez más dura y compleja ya que los desniveles entre enseñanza media y superior son cada vez mayores y la preocupación de los matemáticos ha acabado en crear Comisiones Internacionales para analizar todos estos problemas y conseguir una reforma profunda de los programas de enseñanza desde 1950.
Resumo:
Ante el despertar de una conciencia pedagógica media nacional es necesaria la colaboración directa del profesorado de enseñanza media para fijar un nivel mínimo de ingreso y, después, del resto de los niveles por curso. Además, de cuestiones matemáticas que ofrezcan mayor dificultad a los alumnos y que permitan corregir sus mayores errores en los diferentes cursos del bachillerato.
Resumo:
La enseñanza de las matemáticas tiene mucho que ganar si se hace más humana; tanto si es tradicional como no se reduce a la misma cuestión; el proponer una matemática descarnada, encerrada en sí misma. Sus programas hay que darlos completos, ignorando siempre a los niños. Lo que hace que el profesor se vea obligado a condicionarlos lo más deprisa posible sin tener en cuenta su afectividad y su desarrollo personal. El cambio no vendrá por nuestras reformas sólo puede venir de los profesores teniendo un buen contacto adaptado al alumno. La comprensión de asegurar el aprendizaje, pero hay que comprenderles de verdad. Aprendemos de nuestros errores, ya que nos obliga a reflexionar. Mantened todos los lazos con la vida porque esta es la mejor motivación de la enseñanza de las matemáticas y la fuente inagotable de temas pedagógicos. Los variados y atractivos para los jóvenes alumnos que descubren al mismo tiempo que los hechos se matematizan.
Resumo:
Reflexión acerca de la enseñanza de las matemáticas. En primer lugar se analizan los factores con incidencia en la enseñanza de las Matemáticas, que son muy diversos, por lo que se descartan algunos. Los que si se consideran en profundidad son los factores de tipo sociológico, y la ausencia de razones últimas, con la crisis del humanismo. Por último se tienen en consideración los problemas pedagógicos en relación con el desarrollo de la matemática.
Resumo:
Se exponen varias ideas surgidas de los estudios de Piaget, según los cuales, existe una estrecha relación entre las estructuras más abstractas y generales de la matemática moderna con las estructuras mentales, también, que el pensamiento se apoya en la acción, y por último, que en el desarrollo de estas operaciones mentales se siguen una serie de etapas. Teniendo en cuenta estos conceptos se señalan las características que debe reunir el material didáctico de la matemática moderna y se describen algunos de los materiales más frecuentes.
Resumo:
Comprobar si los conceptos relativos a la Teoría de conjuntos, figuras geométricas y ángulos se adquieren realmente o son sólo generalizaciones que conservan aspectos perceptuales. Observar si los niños son capaces de aplicar estas nociones a la realidad. El trabajo asume que la mejora de la enseñanza de las Matemáticas supone un conocimiento de cómo se construyen las nociones en relación con las situaciones en que se presentan. Propone nuevas modificaciones y criterios didácticos para la enseñanza de las Matemáticas. Nociones de la Teoría de conjuntos: 60 ss. entre 5 y 12 años pertenecientes a colegio publico (clase media) y otro privado (clase media-alta y media). Se seleccionaron 5 sujetos por cada nivel de edad. Comprensión de figuras geométricas: 40 ss. de primero a octavo de EGB (cinco por curso) pertenecientes a un colegio nacional de Madrid. Comprensión del concepto de ángulo: 30 ss. de tercero a octavo de EGB (5 sujetos por curso) pertenecientes a un colegio nacional de las afueras de Madrid. Aplicación de nociones matemáticas a problema de engranajes: 42 ss. entre 7 y 12 años de los cursos segundo y sexto de EGB (7 sujetos por nivel de edad) pertenecientes a un colegio nacional de Madrid. Cuatro diseños que evalúan comprensión de nociones en ámbitos diferentes. Siguiendo el método clínico en las que se evalúan dificultades de comprensión, aplicación a situaciones reales, ejemplos y utilidad percibida de diferentes conceptos (estos aspectos funcionan como variable dependiente). La variable independiente es la edad o el curso, según casos. Entrevistas individuales, fueron grabadas en audio y codificadas simultáneamente por dos observadores. Los datos fueron distribuidos en niveles según el grado de comprensión que denotaban los protocolos. Diseños: I, Teoria de conjuntos: 5-sujetos-x6-niveles de edad- x2-centros-. Intrasujeto. II, figuras geométricas: 5-sujetos-x8-cursos-. Intrasujeto. III, ángulos: 5-sujetos-x6-cursos-. Intrasujeto. IV, engranajes: 7-sujetos-x6-cursos-. Intrasujeto. Nociones sobre conjuntos: no se asimilan hasta cuarto de EGB, y a partir de aquí sólo de forma parcial. Frecuente que el niño confunda la noción de conjunto con su representación gráfica. Tampoco existe relación con las restantes nociones de Matemáticas. Figuras geométricas: se identifican como tales sólo en determinadas posiciones. No hay una comprensión de los conceptos, sólo una asociación entre una palabra y una figura determinada. El concepto de ángulo se asocia a longitud de los lados. Engranajes: se observan grandes dificultades de comprensión de desplazamientos y direcciones. No son capaces de relacionar nociones matemáticas, que ya poseen, con este problema para solucionarlo. La deformación a que someten los niños las enseñanzas para adaptarlas a su estructura mental ponen de manifiesto tales estructuras. Los conceptos elaborados por el niño tienen una alta dependencia de las configuraciones perceptivas y anecdóticas sin alcanzar verdadera comprensión. Se observa gran dificultad para aplicar estas nociones a problemas concretos. Recomendaciones curriculares para mejorar la enseñanza de las Matemáticas.
Resumo:
La presente investigación plantea un objetivo general que consiste en valorar el grado de eficacia de un programa de entrenamiento en estrategias de aprendizaje para la enseñanza de la matemática en alumnos de educación superior, y del cual se desglosan algunos objetivos específicos como puede ser el diseñar y validar un cuestionario como instrumento de medida de las variables estrategias de selección, organización, elaboración y verificación. A partir de los objetivos, se propone la siguiente hipótesis general: Es posible elaborar un procedimiento eficaz de enseñanza de estrategias de aprendizaje en la matemática, para aplicarlo en el escenario habitual de las aulas de clase en alumnos de educación superior, entendiendo por eficaz que mejore el rendimiento específico de los alumnos y el uso de las estrategias objeto de estudio.. La población que constituye la muestra estuvo constituida por trescientos ochenta alumnos de la asignatura Matemática II del seguro semestre de la carrera Educación Integral de la Universidad Nacional Experimental de los Llanos Occidentales 'Ezequiel Zamora' UNELLEZ-Barinas, Venezuela; distribuidos en ocho grupos, de los cuales se seleccionaron cuatro al azar, dos que constituyeron al grupo experimental con setenta y dos participantes y los otros dos al grupo control con setenta y cuatro participantes, lo que conformó finalmente la muestra trabajada con un total de ciento cuarenta y seis participantes. La metodología empleada responde a un enfoque cuasi-experimental secuencial con grupo control no equivalente donde se intenta determinar si los grupos experimentales al compararlos con grupos control que no han sido tratados muestran diferencias predecibles en los resultados. Para la recogida de información se utilizó un cuestionario elaborado por el investigador, denominado Cuestionario SOEV, con el fin de medir el nivel de utilización de las estrategias de selección, organización, elaboración y verificación, basándose en las escalas clasificación con formato tipo Likert de 5 categorías. No obstante, se utilizaron: Escalas de estrategias de aprendizaje, Test de aptitudes diferenciales y diversas pruebas de rendimiento específico. Además para analizar los datos se llevaron a cabo tres tipos de análisis: Intergrupo, Intragrupo e Intergrupo según las covariables. Este trabajo es fruto de un proceso con una duración aproximada de 3 años, durante el cual se realizaron las siguientes fases: pretest, aplicación del programa y postest.. Las conclusiones apuntan que se ha demostrado que el programa de entrenamiento 'Aprender a Comprende Matemática' ha sido existo, dado que, ha logrado que el grupo experimental incremente sus puntuaciones en las estrategias de selección, organización, elaboración y verificación de forma muy significativa respecto del grupo de control, consiguiendo un incremento en las calificaciones del rendimiento..
Resumo:
“SEC21” (Secundaria Siglo 21) es un proyecto cuyo propósito principal es integrar la cultura de las nuevas tecnologías informáticas a la escuela secundaria, utilizándolas como recursos para rediseñar la enseñanza. Este proyecto se enmarca dentro de las acciones contempladas tanto en el Plan Nacional de Educación 1995-2000, como en el correspondiente al período 2001-2006 de la Secretaría de Educación Pública de nuestro país. Entre las acciones realizadas para poner en marcha el proyecto se desarrolla un programa de capacitación de los profesores a través del cual se pretende que conozcan la tecnología y los materiales a utilizar, así como el modelo de enseñanza y que, además reafirmen el dominio del contenido disciplinar. El presente trabajo es un reporte preliminar de una serie de observaciones hechas sobre los efectos de dicho programa de capacitación en los profesores de Matemáticas de la Escuela Secundaria Técnica No. l, de Hermosillo, Sonora, México. La técnica utilizada para obtener información fue la observación participante y la entrevista.
Resumo:
La última década del siglo XX se caracterizó por el avance de la tecnología computacional a pasos agigantados y su influencia en todas las esferas de la actividad humana. Especialmente el proceso de enseñanza-aprendizaje se ha visto marcado por dicha influencia y hoy se abren posibilidades para el desarrollo del proceso docente educativo. Desaprovechar las oportunidades docentes que ofrecen los nuevos soportes electrónicos, sería como decir que todo lo que el hombre ha descubierto en el siglo pasado es innecesario para la humanidad. Con este trabajo pretendemos presentar nuestras ideas sobre cómo y por qué elaborar clases por computadora y abrir con ello un lugar a la discusión en nuestro medio latinoamericano.
Resumo:
A partir de la pasada década comenzaron a tener auge, en el ámbito de la matemática educativa, las ideas de Vigotsky y su teoría psicológica; sin embargo, aún entre los docentes e investigadores latinoamericanos se conoce poco sobre los principales presupuestos de su teoría psicológica y lo más importante, de sus implicaciones para la enseñanza de las matemáticas. El enfoque histórico-cultural ha servido durante muchos años de referente teórico en las investigaciones educativas en Cuba, influidas por la formación de profesionales cubanos de alto nivel en la desaparecida Unión Soviética y enriquecidas por ese laboratorio permanente que es la práctica educacional cubana. Este trabajo tiene como objetivo divulgar entre los profesores e investigadores de la comunidad de educadores matemáticos latinoamericanos, los principales presupuestos teóricos de esta escuela psicológica, significándolos en el contexto de la enseñanza y aprendizaje de las matemáticas, aunque con énfasis especial en el nivel superior, a tono con el nivel de enseñanza donde el autor desarrolla sus investigaciones.
Resumo:
This article analyzes the relationship between the admission exams from the Universidad Nacional de Costa Rica (UNA) and the performance of students during their first two courses of specialization in the field of Teaching Mathematics.In this analysis, the following variables were considered: individual result at the admission exam, average performance during high school and during the first two Mathematics courses of the career. To determine the relation between the variables, Pearson’s correlation coefficient was used.The results reveal that the different modules of the admission exams show a low correlation with the performance in both courses. Therefore, the research concluded that the current process of selection of students, based on an admission exam, is not a tool that can be considered adequate to detect the previous knowledge to guarantee the success in the university career
Resumo:
La matemática es un idioma como varios autores han mencionado en diferentes trabajos científicos. En este artículo se analizan y comparan cuatro componentes del lenguaje y la matemática. Por otra parte, la matemática no es exactamente como otros idiomas. De hecho, la matemática parece ser más precisa y más limitada que los otros idiomas y esto tiene varias consecuencias en lo que se refiere a la enseñanza de dicha disciplina. En este artículo comentaremos nuestras experiencias, desarrolladas en Argentina, Alemania y Uruguay, teniendo en cuenta este enfoque de la enseñanza de la matemática como una extensión de la enseñanza de la lengua, y veremos cómo este enfoque ayudó a los estudiantes de los cursos de Cálculo, en diferentes formas.