999 resultados para Elemento finito de laje


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O principal objectivo deste trabalho foi o desenvolvimento de um programa de cálculo automático de lajes baseado no método dos elementos finitos. Como introdução ao tema é efectuada uma análise da evolução das estruturas ao longo dos tempos, diferenciando os vários tipos de estruturas que existem. São explicitados os conceitos fundamentais da mecânica dos sólidos, bem como os vários tipos de análises estruturais, os tipos de elementos finitos mais utilizados, bem como a classificação dos diversos tipos de estruturas. Devido à importância que o método dos elementos finitos tem na engenharia actual, é apresentada uma breve descrição da sua evolução ao longo dos tempos. Como abordagem mais abrangente são apresentados os conceitos gerais do método, evoluindo depois para uma descrição mais pormenorizada, aplicado aos elementos de laje adoptados no programa de cálculo desenvolvido. As lajes podem ser modeladas através da teoria das lajes finas ou espessas, sendo apresentados os fundamentos teóricos e simplificações que sustentam estas duas abordagens. A validação do programa de cálculo elaborado nesta dissertação, é efectuado através de dois exemplos, um modelo simples e outro mais complexo onde se demonstram todas as potencialidades do programa. A validação é efectuada através da comparação dos resultados, obtidos pelo programa e por um programa de referência no cálculo estrutural, o SAP2000. O desenvolvimento deste trabalho tem um objectivo mais abrangente de no futuro, este módulo, poder ser incluído num pacote de cálculo estrutural alargado a outro tipo de estruturas. Com este pressuposto, foi efectuada uma descrição pormenorizada da organização do programa e das suas capacidades e desenvolvido um manual de utilização.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se desarrolla un elemento finito especial que permite la conexión entre un elemento viga (con flexión) y un elemento cuadrilátero de extensión (tensión o deformación plana). Asimismo, este elemento especial sirve para modelizar la discontinuidad existente en el contacto entre diferentes materiales. La formulación en movimientos del elemento, permite su inserción directa en un programa general de elementos finitos y, de esta forma, calcular estructuras de hormigón en contacto con el suelo (muros de contención, cimentación, estructuras enterradas como túneles y tuberías, etc.), tanto en el rango elástico como en el elastoplástico, utilizando una potencia limitada en medios computacionales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nesta dissertação desenvolveu-se um programa de cálculo automático que efectua a análise estrutural de placas, sujeitas a acções estáticas e considerando um comportamento isotrópico elástico linear dos materiais. Este programa foi elaborado em linguagem Fortran. O método que se utilizou para o cálculo das estruturas é baseado na teoria dos elementos finitos, tendo sido adoptados elementos finitos com dois graus de liberdade por nó (duas translações), associados ao método dos deslocamentos para a sua resolução. Para permitir a representação dos resultados obtidos pelo programa, utilizou-se um módulo gráfico comercial: GiD. A validação do programa desenvolvido foi feita a partir da comparação dos resultados calculados de alguns exemplos com os obtidos através de um programa de cálculo estrutural de referência: SAP2000. Esta dissertação contempla ainda um manual, que tem como finalidade o fornecimento de indicações para a correcta utilização do software desenvolvido, o qual inclui orientações para a introdução de dados e respectiva interpretação de resultados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O principal objectivo da presente dissertação foi o desenvolvimento de um programa de cálculo automático de estruturas reticulares planas. A execução deste trabalho insere-se num programa mais vasto e ambicioso, em que se pretende desenvolver um pacote de cálculo automático de estruturas para utilização académica. Este pacote incluirá o tipo de elementos mais utilizado na Engenharia Civil, podendo efectuar análises lineares e não-lineares, considerando acções estáticas e dinâmicas. Pretende-se também dotar este pacote com o dimensionamento e verificação da segurança dos elementos estruturais. O programa foi desenvolvido recorrendo ao Método dos Elementos Finitos. Em face da aplicação deste método é efectuada uma breve resenha histórica, incluindo o seu desenvolvimento, campos de aplicação e importância na Engenharia Civil para o cálculo de estruturas. Foram implementados elementos finitos do tipo barra 2D de secção constante, em que se admitiu um material isotrópico com comportamento elástico linear. O programa permite a aplicação de cargas estáticas nos nós e elementos de barra, assentamentos de apoio, e fornece os resultados de forma gráfica e numérica. A validação do programa de cálculo foi efectuada através da comparação dos resultados obtidos pelo programa com um outro Programa de cálculo estrutural comercial (SAP2000) e com valores apresentados na bibliografia [LNEC, 1984]. Com o objectivo de incluir este trabalho num pacote de programas mais abrangentes, foi elaborado um fluxograma onde são descritos os blocos principais que compõem o programa desenvolvido e um manual de utilização devidamente pormenorizado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os modelos a ser analisados pelo Método de Elementos Finitos são cada vez mais complexos e, nos tempos que correm, seria impensável realizar tais análises sem um apoio computorizado. Existe para esta finalidade uma vasta gama de programas que permitem realizar tarefas que passam pelo desenho de estruturas, análise estática de cargas, análise dinâmica e vibrações, visualização do comportamento físico (deformações) em tempo real, que permitem a otimização da estrutura. Sob o pretexto de permitir a qualquer utilizador uma análise de estruturas simples com o Método dos Elementos Finitos, surge esta tese, onde se irá criar de raiz um programa com interface gráfica no ambiente MATLAB® para análise de estruturas simples com dois tipos de elemento finito, triangular de deformação constante e quadrangular de deformação linear. O software desenvolvido, verificado por comparação com um software comercial dedicado para o efeito, efetua malhagem com elementos bidimensionais triangulares e quadriláteros e resolve modelos arbitrados pelo Método de Elementos Finitos, representando estes resultados visualmente e em formato tabular.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Com o presente trabalho pretende-se formular, implementar e validar duas classes de elementos finitos não-convencionais para problemas elastoestáticos e elastodinâmicos (harmónicos e transitórios) envolvendo barras solicitadas por cargas axiais. O desempenho numérico dos elementos não convencionais é estudado para uma larga gama de situações de interesse prático e comparado com o dos elementos finitos conformes de deslocamento (convencionais). A resolução de problemas transitórios envolve a integração no tempo e no espaço das equações diferenciais governativas, bem como a imposição das respetivas condições iniciais e de fronteira. A metodologia de integração no tempo adotada neste trabalho é baseada no método de Newmark. A resolução de problemas estáticos e harmónicos não carece de integração no tempo, ou a mesma é feita de forma trivial. Concluída a discretização no tempo, a segunda fase da resolução envolve a integração no espaço de cada uma das equações discretizadas, nomeadamente através do método dos elementos finitos. Para esse efeito, apresentam-se as formulações relativas aos elementos finitos convencionais, híbridos e híbridos-Trefftz. As três formulações têm como ponto de partida a forma fraca da equação diferencial de Navier, que é imposta utilizando o método de Galerkin. A principal diferença entre os elementos convencionais e não-convencionais prende-se com a maneira como são impostas as condições de fronteira de Dirichlet e as condições de compatibilidade nas fronteiras interiores. Os elementos não convencionais são implementados numa plataforma computacional desenvolvida de raiz no ambiente Matlab. A implementação é feita de maneira a permitir uma definição muito geral e flexível da estrutura e das respetivas ações, bem como das discretizações no tempo e no espaço e das bases de aproximação, que podem ser diferentes para cada elemento finito. Por fim, efetuam-se testes numéricos com o objetivo de analisar os resultados obtidos com os elementos não convencionais e de os comparar com as respetivas soluções analíticas (caso existam), ou com os resultados obtidos utilizando elementos convencionais. É especialmente focada a convergência das soluções aproximadas sob refinamentos da malha (h), no espaço e no tempo, e das funções de aproximação (p), sendo que o uso simultâneo dos dois refinamentos parece conduzir mais rapidamente a soluções próximas da solução exata. Analisam-se também problemas complexos, envolvendo propagação de ondas de choque, com o fim de se efetuar uma comparação entre os elementos convencionais, disponíveis no programa comercial SAP2000, e os elementos não convencionais fornecidos pela plataforma computacional desenvolvida neste trabalho.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Térmica y Fluídos) UANL

Relevância:

80.00% 80.00%

Publicador:

Resumo:

o objetivo desta tese é apresentar dois modelos distintos para representar as fissuras em peças de concreto armado: um do tipo distribuído e outro do tipo incorporado. Os modelos de fissura incorporada se baseiam no conceito de descontinuidades incorporadas dentro do campo de deslocamento do elemento finito padrão. Já nos modelos de fissura distribuída a descontinuidade do campo de deslocamentos causada pela fissura é espalhada ao longo do elemento. O modelo distribuído proposto apresenta um diagrama tensão-deformação multilinear e sua calibragem é feita, segundo o Código Modelo CEB-FIP 1990, através de ensaios de tirantes de concreto armado. O modelo incorporado implementado é baseado no modelo de Dvorlcin, CuiMo e Gioia, o qual não inclui a contribuição da armadura no equilíbrio interno de forças do elemento. A inclusão da parcela da armadura é feita através de um modelo de transferência de tensão por aderência, conforme Russo, Zingone e Romano, Russo e Romano e FIE - Bulletin 10. Para representar o comportamento do concreto intacto, utiliza-se o modelo constitutivo de Ottosen. Trata-se de um modelo elástico não-linear, tridimensional, que utiliza valores secantes dos parâmetros do material. Já para simular o comportamento das barras de aço da armadura, emprega-se o modelo incorporado desenvolvido por Elwi e Hrudey. Neste modelo, permite-se uma disposição arbitrária das barras de aço no interior dos elementos de concreto. O modelo constitutivo adotado para a armadura é do tipo elasto-plástico com endurecimento. Por fim, alguns exemplos numéricos são analisados com o objetivo de comprovar a eficácia dos dois modelos propostos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta o método dos elementos finitos em conjunto com métodos numéricos especificos para a solução de problemas de fratura. Esta é uma poderosa ferramenta para a análise de fraturas e soluções confiáveis são obtidas para problemas complexos de Engenharia tanto no campo linear como no não-linear. O elemento finito. implementado é do tipo isoparamétrico quadrâtico da família Serendipity. Com dois graus de liberdade por nó, permite discretizar em estado plano de tensão ou deformação estruturas com geometrias bastante variadas. Para a análise linear são implementadas quatro técnicas consagradas para a avaliação do fator de intensidade de tensão no modo I de fratura: extrapolação de doslocamentos (usando malha somente com elementos convencionais e malha mesclada com elementos especiais), taxa de liberação de energia de defermação, extensão virtual da trinca e o método da integral J, descartando-se neste caso a hipótese de descarregamento. A linguagem de programação adotada é o FORTRAN 77. A entrada de dados é feita por intermédio de arquivos previamente preparados. Os resultados obtidos são confrontados com resultados experimentais e computacionais fornecidos por outros programas. Analisam-se placas, estruturas de uso na indústria e simulam-se ensaios como o corpo de prova de flexão em três pontos e o corpo de prova de tensão. compacto.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na protensão não aderente, a armadura permanece livre para se movimentar ao longo de seu perfil em todas as seções com exceção das de ancoragem. Não há aderência entre concreto e armadura, e a hipótese da compatibilidade de deformações entre o aço e concreto não é aplicável, tornando inviável o desenvolvimento de uma solução analítica. Visando colaborar para a maior compreensão do comportamento à flexão das estruturas com protensão não aderente e para o desenvolvimento de critérios nacionais de projeto, um modelo numérico foi implementado utilizando o elemento finito do tipo híbrido para pórticos planos. Nesta formulação, a equação para as solicitações ao longo do elemento é a função de interpolação, e as forças as variáveis interpoladas. Como esta função resulta das condições de equilíbrio, sem hipóteses arbitrárias, o método é considerado exato para forças e curvaturas. Elementos longos são possíveis, de maneira que um único elemento finito pode ser utilizado para um vão de viga ou pilar, reduzindo o esforço computacional. O caráter exato da formulação contribui para a boa modelagem dos cabos não aderentes, já que a tensão nestas armaduras depende das curvaturas de todas as seções do elemento. O modelo numérico proposto prevê a não linearidade geométrica, carregamentos cíclicos e a construção composta. Relações constitutivas já consolidadas na literatura são empregadas para os materiais. A cadeia de Maxwell é utilizada para representar o comportamento reológico do concreto e do aço de protensão, respeitando as características de envelhecimento de cada material. Inúmeros exemplos são apresentados, permitindo a comparação entre resultados numéricos e experimentais Uma análise paramétrica foi realizada, caracterizando o desempenho do modelo numérico frente a variações nos parâmetros de entrada. Discutem-se, ainda, dois critérios de ruptura para a utilização do modelo numérico no estudo do comportamento à flexão das estruturas com protensão não aderente. Os resultados indicam o bom desempenho do modelo numérico e a sua adequação para a realização de pesquisas sobre o assunto.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho é uma contribuição para o conhecimento de metodologias de projeto de estruturas de material composto, aplicando métodos de otimização estrutural a cascas laminadas e apresentando uma estratégia em dois níveis. No primeiro nível é realizada a minimização da flexibilidade da estrutura, tendo como variável de projeto a orientação de cada lâmina da estrutura. Utiliza-se Programação Linear Seqüencial (SLP) e direção de tensão principal para otimização da orientação. No segundo nível minimiza-se o volume de cada lâmina, usando a flexibilidade total da estrutura como restrição e a densidade relativa como variável de projeto, também através de SLP. Para evitar aparecimento de áreas com densidades intermediárias, utiliza-se um Método de Continuação, dividindo o nível de otimização topológica em duas ou mais etapas. As formulações desenvolvidas permitem a solução de problemas com múltiplos casos de carregamento. Para a solução da equação de equilíbrio de casca laminada, utiliza-se um elemento finito de casca degenerado de oito nós com integração explícita na direção da espessura. A implementação desse elemento é feita de modo a facilitar a obtenção das derivadas da matriz de rigidez, necessárias na linearização das funções objetivo e restrições. Evita-se assim o uso de derivadas numéricas. Resultados para vários tipos de estrutura são apresentados, incluindo comparações entre diferentes carregamentos, condições de contorno, número de lâminas, espessuras, etc. As soluções obtidas, formas de análise e possíveis aplicações são discutidas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A protensão não aderente é um sistema de pós-tensão caracterizado pela liberdade de deslizamento da armadura em relação ao concreto, ao longo de todo o perfil do cabo, com exceção das ancoragens. Devido à falta de aderência entre aço e concreto, a compatibilidade de deformações dos materiais na seção transversal não existe. O que se verifica é a compatibilidade de deslocamentos, com a equivalência entre os alongamentos do cabo e das fibras de concreto adjacentes ao mesmo. Isto acarreta complexidade no projeto de tais estruturas. No que se refere ao dimensionamento no Estado Limite Último, a tensão atuante nas armaduras não aderentes, também denominada tensão última de protensão, não é, a princípio, conhecida. Para sua obtenção, é fundamental a precisa determinação das curvaturas ao longo do elemento, tornando o desenvolvimento analítico de uma solução, praticamente inviável. Geralmente, são utilizados critérios empíricos para a previsão da tensão última de protensão em armaduras não aderentes. Estes levam em conta na sua formulação, parâmetros considerados como de grande influência no valor da tensão última de protensão. A fim de avaliar a significância de alguns destes fatores no valor da tensão última de protensão, um estudo paramétrico foi realizado. Parâmetros como a taxa de armadura, a tensão efetiva inicial de protensão, a relação entre a altura do elemento e o seu vão e, também, o tipo de carregamento, foram investigados. Para tal, um protótipo foi idealizado por meio de um modelo numérico Este modelo utiliza a formulação de elemento finito do tipo híbrido para pórticos planos, que é caracterizado pela precisa obtenção das curvaturas, e mostrou-se adequado para utilização na presente pesquisa. A análise dos resultados obtidos permitiu a identificação e quantificação da influência dos parâmetros estudados, no valor da tensão última de protensão. A relevância dos valores de tensão obtidos, em função dos parâmetros adotados, na capacidade portante dos elementos, foi também avaliada.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents an optimization technique based on structural topology optimization methods, TOM, designed to solve problems of thermoelasticity 3D. The presented approach is based on the adjoint method of sensitivity analysis unified design and is intended to loosely coupled thermomechanical problems. The technique makes use of analytical expressions of sensitivities, enabling a reduction in the computational cost through the use of a coupled field adjoint equation, defined in terms the of temperature and displacement fields. The TOM used is based on the material aproach. Thus, to make the domain is composed of a continuous distribution of material, enabling the use of classical models in nonlinear programming optimization problem, the microstructure is considered as a porous medium and its constitutive equation is a function only of the homogenized relative density of the material. In this approach, the actual properties of materials with intermediate densities are penalized based on an artificial microstructure model based on the SIMP (Solid Isotropic Material with Penalty). To circumvent problems chessboard and reduce dependence on layout in relation to the final optimal initial mesh, caused by problems of numerical instability, restrictions on components of the gradient of relative densities were applied. The optimization problem is solved by applying the augmented Lagrangian method, the solution being obtained by applying the finite element method of Galerkin, the process of approximation using the finite element Tetra4. This element has the ability to interpolate both the relative density and the displacement components and temperature. As for the definition of the problem, the heat load is assumed in steady state, i.e., the effects of conduction and convection of heat does not vary with time. The mechanical load is assumed static and distributed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The topology optimization problem characterize and determine the optimum distribution of material into the domain. In other words, after the definition of the boundary conditions in a pre-established domain, the problem is how to distribute the material to solve the minimization problem. The objective of this work is to propose a competitive formulation for optimum structural topologies determination in 3D problems and able to provide high-resolution layouts. The procedure combines the Galerkin Finite Elements Method with the optimization method, looking for the best material distribution along the fixed domain of project. The layout topology optimization method is based on the material approach, proposed by Bendsoe & Kikuchi (1988), and considers a homogenized constitutive equation that depends only on the relative density of the material. The finite element used for the approach is a four nodes tetrahedron with a selective integration scheme, which interpolate not only the components of the displacement field but also the relative density field. The proposed procedure consists in the solution of a sequence of layout optimization problems applied to compliance minimization problems and mass minimization problems under local stress constraint. The microstructure used in this procedure was the SIMP (Solid Isotropic Material with Penalty). The approach reduces considerably the computational cost, showing to be efficient and robust. The results provided a well defined structural layout, with a sharpness distribution of the material and a boundary condition definition. The layout quality was proporcional to the medium size of the element and a considerable reduction of the project variables was observed due to the tetrahedrycal element