982 resultados para Elementary Algebra
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
First issued in 25 parts, July 15, 1836, to June 1, 1842.
Resumo:
Mode of access: Internet.
Resumo:
We report on an elementary course in ordinary differential equations (odes) for students in engineering sciences. The course is also intended to become a self-study package for odes and is is based on several interactive computer lessons using REDUCE and MATHEMATICA . The aim of the course is not to do Computer Algebra (CA) by example or to use it for doing classroom examples. The aim ist to teach and to learn mathematics by using CA-systems.
Resumo:
Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
We comment on the off-critical perturbations of WZNW models by a mass term as well as by another descendent operator, when we can compare the results with further algebra obtained from the Dirac quantization of the model, in such a way that a more general class of models be included. We discover, in both cases, hidden Kac-Moody algebras obeyed by some currents in the off-critical case, which in several cases are enough to completely fix the correlation functions.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.