964 resultados para Elemental semiconductors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of initial stage control of the elemental composition and core/shell structure of binary SiC quantum dots by optimizing temporal variation of Si and C incoming fluxes and surface temperatures is shown via hybrid numerical simulations. Higher temperatures and influxes encourage the formation of a stoichiometric outer shell over a small carbon-enriched core, whereas lower temperatures result in a larger carbon-enriched core, Si-enriched undershell, and then a stoichiometric SiC outer shell. This approach is generic and is applicable to a broad range of semiconductor materials and nanofabrication techniques. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulfur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng.m-3 (87%) higher than the average for all wind directions and 0.83 ng.m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

π-Conjugated polymers are the most promising semiconductor materials to enable printed organic thin film transistors (OTFTs) due to their excellent solution processability and mechanical robustness. However, solution-processed polymer semiconductors have shown poor charge transport properties mainly originated from the disordered polymer chain packing in the solid state as compared to the thermally evaporated small molecular organic semiconductors. The low charge carrier mobility, typically < 0.1 cm2 /V.s, of polymer semiconductors poses a challenge for most intended applications such as displays and radio-frequency identification (RFID) tags. Here we present our recent results on the dike topyrrolopyrrole (DPP)-based polymers and demonstrate that when DPP is combined with appropriate electron donating moieties such as thiophene and thienothiophene, very high charge carrier mobility values of ~1 cm2/V.s could be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary requirements for high-biomass-concentration microalgal cultivation include a photon source and distribution, efficient gas exchange and suitable growth medium composition. However, for mass outdoor production of microalgae, growth medium composition is a major controlling factor as most of the other factors such as light source and distribution are virtually uncontrollable. This work utilises an elemental balance approach between growth medium and biomass compositions to obtain high-density microalgal cultures in an open system. F medium, commonly used for the cultivation of marine microalgae such as Tetraselmis suecica was redesigned on the basis of increasing the biomass capacity of its major deficient components to support high biomass concentrations (τ ∼ 5.0 % for N, S and τ ∼ 10 % P), and the entire formulation was dissolved in 0.2 um sterile filtered natural seawater. Results show that the new medium (F') displayed a maximum biomass concentration and total lipid concentration of 1.29 g L 1 and 108.7 mg L 1 respectively, which represents over 2-fold increase compared to that of the F medium. Keeping all variables constant except growth medium, and using F medium as the base case of 1 medium cost (MC) unit mg -1 lipid, the F' medium yielded lipid at a cost of only 0.35 MC unit mg -1 lipids. These results show that greater amounts of biomass and lipids can be obtained more economically with minimal extra effort simply by using an optimised growth medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there is a limited understanding of the sources of ambient fine particles that contribute to the exposure of children at urban schools. Since the size and chemical composition of airborne particle are key parameters for determining the source as well as toxicity, PM1 particles (mass concentration of particles with an aerodynamic diameter less than 1 µm) were collected at 24 urban schools in Brisbane, Australia and their elemental composition determined. Based on the elemental composition four main sources were identified; secondary sulphates, biomass burning, vehicle and industrial emissions. The largest contributing source was industrial emissions and this was considered as the main source of trace elements in the PM1 that children were exposed to at school. PM1 concentrations at the schools were compared to the elemental composition of the PM2.5 particles (mass concentration of particles with an aerodynamic diameter less than 2.5 µm) from a previous study conducted at a suburban and roadside site in Brisbane. This comparison revealed that the more toxic heavy metals (V, Cr, Ni, Cu, Zn and Pb), mostly from vehicle and industrial emissions, were predominantly in the PM1 fraction. Thus, the results from this study points to PM1 as a potentially better particle size fraction for investigating the health effects of airborne particles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents a modified version of the grain boundary barrier model for polycrystalline semiconductors which takes into account the carrier transport in the bulk of the grain and the dynamic process of capture and release of free carriers by the grain boundary traps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent observation of n-type conduction in amorphous Ge20Ss_xBix at large bismuth concentrations (x = 11), which otherwise shows p-type conduction, has aroused considerable interest in the international scientific community [1]. The mechanism of such impurity incorporation in a germanium chalcogenide glass is not understood and is a topic of current interest. In our recent publications [2-10] we have brought to light some hitherto unknown and interesting features of bismuth dopants in chalcogen-rich Ge-X (X -- S, Se) glassy compositions. In this communication we present our new results of investigations on vitreous semiconductors Ge20S80 Bi using electron microscopy, electron diffraction of as-prepared and annealed/pressure quenched compositions. Our results provide conclusive support to the formation of composite clusters containing all the three elements, germanium, sulphur and bismuth, which crystallize in simpler stoichiometric compounds Bi2S3 and GeS2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the relative efficacy of nonele-mental versus semielemental enteral supplements for nutritional rehabilitation of cystic fibrosis (CF) patients, whole-body protein turnover using the [15N]glycine method was studied in nine malnourished CF patients during enteral feedings, in a block design study compar-ing a semielemental formula (Criticare), a higher protein density but nonelemental formula (Traumacal) (T), and a nonelemental formula that had been modified to become isocaloric and isonitrogenous to the semielemental formula (modified Traumacal, MT). No significant differences in rates of protein synthesis or catabolism were observed comparing the three formulas. However the higher protein density nonelemental formula resulted in higher net protein deposition compared to the other two formulas (T + 0.42 g kg-110 h-1versus 0.33 g kg-110 h-1for Criticare and-0.59 g kg-110 h-1for MT), although this was significant (p < 0.05) for the MT versus T comparison only. This study lends support to the use of less expensive nonelemental formulas for the nutritional management of malnourished patients with CF. © 1990 Raven Press Ltd, New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature fluorination technique is adopted for fluorination of the following sulphur compounds in freon-11 medium (1) Sulphur dioxide (2) Thionyl chloride (3) Sulphuryl chloride (4) Tetrasulphur tetra nitride and (5) Sulphur bromide. All the compounds undergo oxidative fluorination to give rise to sulphur-fluorine compounds except sulphuryl chloride which resists fluorination. Sulphuryl chloride thus behaves as a good solvent medium for fluorination of other reactive compounds like elemental sulphur. Details of the experimental procedures adopted and the identification of the products will be presented.