945 resultados para Electron trapping
Resumo:
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions.
Resumo:
We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.
Resumo:
The growing demand for flexible and low-cost electronics has driven research towards the study of novel semiconducting materials to replace traditional semiconductors like silicon and germanium, which are limited by mechanical rigidity and high production cost. Some of the most promising semiconductors in this sense are metal halide perovskites (MHPs), which combine low-cost fabrication and solution processability with exceptional optoelectronic properties like high absorption coefficient, long charge carrier lifetime, and high mobility. These properties, combined with an impressive effort by many research groups around the world, have enabled the fabrication of solar cells with record-breaking efficiencies, and photodetectors with better performance than commercial ones. However, MHP devices are still affected by issues that are hindering their commercialization, such as degradation under humidity and illumination, ion migration, electronic defects, and limited resistance to mechanical stress. The aim of this thesis work is the experimental characterization of these phenomena. We investigated the effects of several factors, such as X-ray irradiation, exposure to environmental gases, and atmosphere during synthesis, on the optoelectronic properties of MHP single crystals. We achieved this by means of optical spectroscopy, electrical measurements, and chemical analyses. We identified the cause of mechanical delamination in MHP/silicon tandem solar cells by atomic force microscopy measurements. We characterized electronic defects and ion migration in MHP single crystals by applying for the first time the photo-induced current transient spectroscopy technique to this class of materials. This research allowed to gain insight into both intrinsic defects, like ion migration and electron trapping, and extrinsic defects, induced by X-ray irradiation, mechanical stress, and exposure to humidity. This research paves the way to the development of methods that heal and passivate these defects, enabling improved performance and stability of MHP optoelectronic devices.
Resumo:
Free radicals in cigarette smoke have been studied using spin trapping EPR techniques. 2R4F reference cigarettes were smoked using 35 ml puff volumes of 2 seconds duration, once every 60 seconds. The particulate phase of the smoke was separated from the gas phase by passing the smoke through a Cambridge filter pad. For both phases, free radicals were measured and identified. A range of spin-traps was employed: PBN, DMPO, DEPMPO, and DPPH-PBN. In the gas-phase, short-lived carbon- and oxygen- centered radicals were identified; the ratios between them changed during the smoking runs. For the first puffs, C-centered radicals predominated while for the later puffs, O-centered radicals were mainly observed. The particulate phase and the ‘tar’ were studied as well.
Resumo:
The iso-alpha-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.
Resumo:
In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed ExB field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.
Resumo:
Strangelets arriving from the interstellar medium are an interesting target for experiments searching for evidence of this hypothetical state of hadronic matter. We entertain the possibility of a trapped strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely, having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the interstellar medium flux (up to 2 orders of magnitude) due to quasistable trapping.
Resumo:
The electrical properties of heavily In‐doped polycrystalline CdS films have been studied as a function of the doping level. The films were prepared by vacuum coevaporation of CdS and In. Conductivity and Hall measurements were performed over the temperature range 77-400 K. The conductivity decreases weakly with the temperature and shows a tendency towards saturation at low temperatures. A simple relationship σ=σ0(1+βT2) is found in the low‐temperature range. The temperature dependence of the mobility is similar to that of the conductivity since the Hall coefficient is found to be a constant in the whole temperature range. We interpret the experimental results in terms of a modified version of grain‐boundary trapping Seto"s model, taking into account thermionic emission and tunneling of carriers through the potential barriers. The barriers are found to be high and narrow, and tunneling becomes the predominating transport mechanism.
Resumo:
The fragmentation patterns and mass spectra of some phenyl tin and -lead halide adducts with hexamethylphosphoramide are compared by subjecting them t~ electron impact and fast atom bombardment ionization in a mass spectrometer. This comparison is restricted to the metal-containing ions. Ligand-exchange mechanisms of some of the metal-containing species are explored by FAB-MS. Several moisturesensitive organo-metallics and H-bonded systems have been examined by FAB for attempted characterization, but without any success. Scavenging and trapping of water molecules by complex aggregates in solutions of quaternary ammonium fluorides and hydroxides are investigated by FAB to complement previous NMR-studies.
Resumo:
Puff-by-puff resolved gas phase free radicals were measured in mainstream smoke from Kentucky 2R4F reference cigarettes using ESR spectroscopy. Three spin-trapping reagents were evaluated: PBN, DMPO and DEPMPO. Two procedures were used to collect gas phase smoke on a puff-resolved basis: i) the accumulative mode, in which all the gas phase smoke up to a particular puff was bubbled into the trap (i.e., the 5th puff corresponded to the total smoke from the 1st to 5th puffs). In this case, after a specified puff, an aliquot of the spin trap was taken and analysed; or, ii) the individual mode, in which the spin trap was analysed and then replaced after each puff. Spin concentrations were determined by double-integration of the first derivative of the ESR signal. This was compared with the integrals of known standards using the TEMPO free radical. The radicals trapped with PBN were mainly carbon-centred, whilst the oxygen-centred radicals were identified with DMPO and DEPMPO. With each spin trap, the puff-resolved radical concentrations showed a characteristic pattern as a function of the puff number. Based on the spin concentrations, the DMPO and DEPMPO spin traps showed better trapping efficiencies than PBN. The implication for gas phase free radical analysis is that a range of different spin traps should be used to probe complex free radical reactions in cigarette smoke.
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.
Resumo:
We show that self-localized ground states can be created in the spin-balanced gas of fermions with repulsion between the spin components, whose strength grows from the center to periphery, in combination with the harmonic-oscillator (HO) trapping potential acting in one or two transverse directions. We also consider the ground state in the noninteracting Fermi gas under the action of the spatially growing tightness of the one- or two-dimensional (1D or 2D) HO confinement. These settings are considered in the framework of the Thomas-Fermi-von Weizsäcker (TF-vW) density functional. It is found that the vW correction to the simple TF approximation (the gradient term) is nearly negligible in all situations. The properties of the ground state under the action of the 2D and 1D HO confinement with the tightness growing in the transverse directions are investigated too for the Bose-Einstein condensate with the self-repulsive nonlinearity. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Los transistores de alta movilidad electrónica basados en GaN han sido objeto de una extensa investigación ya que tanto el GaN como sus aleaciones presentan unas excelentes propiedades eléctricas (alta movilidad, elevada concentración de portadores y campo eléctrico crítico alto). Aunque recientemente se han incluido en algunas aplicaciones comerciales, su expansión en el mercado está condicionada a la mejora de varios asuntos relacionados con su rendimiento y habilidad. Durante esta tesis se han abordado algunos de estos aspectos relevantes; por ejemplo, la fabricación de enhancement mode HEMTs, su funcionamiento a alta temperatura, el auto calentamiento y el atrapamiento de carga. Los HEMTs normalmente apagado o enhancement mode han atraído la atención de la comunidad científica dedicada al desarrollo de circuitos amplificadores y conmutadores de potencia, ya que su utilización disminuiría significativamente el consumo de potencia; además de requerir solamente una tensión de alimentación negativa, y reducir la complejidad del circuito y su coste. Durante esta tesis se han evaluado varias técnicas utilizadas para la fabricación de estos dispositivos: el ataque húmedo para conseguir el gate-recess en heterostructuras de InAl(Ga)N/GaN; y tratamientos basados en flúor (plasma CF4 e implantación de F) de la zona debajo de la puerta. Se han llevado a cabo ataques húmedos en heteroestructuras de InAl(Ga)N crecidas sobre sustratos de Si, SiC y zafiro. El ataque completo de la barrera se consiguió únicamente en las muestras con sustrato de Si. Por lo tanto, se puede deducir que la velocidad de ataque depende de la densidad de dislocaciones presentes en la estructura, ya que el Si presenta un peor ajuste del parámetro de red con el GaN. En relación a los tratamientos basados en flúor, se ha comprobado que es necesario realizar un recocido térmico después de la fabricación de la puerta para recuperar la heteroestructura de los daños causados durante dichos tratamientos. Además, el estudio de la evolución de la tensión umbral con el tiempo de recocido ha demostrado que en los HEMTs tratados con plasma ésta tiende a valores más negativos al aumentar el tiempo de recocido. Por el contrario, la tensión umbral de los HEMTs implantados se desplaza hacia valores más positivos, lo cual se atribuye a la introducción de iones de flúor a niveles más profundos de la heterostructura. Los transistores fabricados con plasma presentaron mejor funcionamiento en DC a temperatura ambiente que los implantados. Su estudio a alta temperatura ha revelado una reducción del funcionamiento de todos los dispositivos con la temperatura. Los valores iniciales de corriente de drenador y de transconductancia medidos a temperatura ambiente se recuperaron después del ciclo térmico, por lo que se deduce que dichos efectos térmicos son reversibles. Se han estudiado varios aspectos relacionados con el funcionamiento de los HEMTs a diferentes temperaturas. En primer lugar, se han evaluado las prestaciones de dispositivos de AlGaN/GaN sobre sustrato de Si con diferentes caps: GaN, in situ SiN e in situ SiN/GaN, desde 25 K hasta 550 K. Los transistores con in situ SiN presentaron los valores más altos de corriente drenador, transconductancia, y los valores más bajos de resistencia-ON, así como las mejores características en corte. Además, se ha confirmado que dichos dispositivos presentan gran robustez frente al estrés térmico. En segundo lugar, se ha estudiado el funcionamiento de transistores de InAlN/GaN con diferentes diseños y geometrías. Dichos dispositivos presentaron una reducción casi lineal de los parámetros en DC en el rango de temperaturas de 25°C hasta 225°C. Esto se debe principalmente a la dependencia térmica de la movilidad electrónica, y también a la reducción de la drift velocity con la temperatura. Además, los transistores con mayores longitudes de puerta mostraron una mayor reducción de su funcionamiento, lo cual se atribuye a que la drift velocity disminuye más considerablemente con la temperatura cuando el campo eléctrico es pequeño. De manera similar, al aumentar la distancia entre la puerta y el drenador, el funcionamiento del HEMT presentó una mayor reducción con la temperatura. Por lo tanto, se puede deducir que la degradación del funcionamiento de los HEMTs causada por el aumento de la temperatura depende tanto de la longitud de la puerta como de la distancia entre la puerta y el drenador. Por otra parte, la alta densidad de potencia generada en la región activa de estos transistores conlleva el auto calentamiento de los mismos por efecto Joule, lo cual puede degradar su funcionamiento y Habilidad. Durante esta tesis se ha desarrollado un simple método para la determinación de la temperatura del canal basado en medidas eléctricas. La aplicación de dicha técnica junto con la realización de simulaciones electrotérmicas han posibilitado el estudio de varios aspectos relacionados con el autocalentamiento. Por ejemplo, se han evaluado sus efectos en dispositivos sobre Si, SiC, y zafiro. Los transistores sobre SiC han mostrado menores efectos gracias a la mayor conductividad térmica del SiC, lo cual confirma el papel clave que desempeña el sustrato en el autocalentamiento. Se ha observado que la geometría del dispositivo tiene cierta influencia en dichos efectos, destacando que la distribución del calor generado en la zona del canal depende de la distancia entre la puerta y el drenador. Además, se ha demostrado que la temperatura ambiente tiene un considerable impacto en el autocalentamiento, lo que se atribuye principalmente a la dependencia térmica de la conductividad térmica de las capas y sustrato que forman la heterostructura. Por último, se han realizado numerosas medidas en pulsado para estudiar el atrapamiento de carga en HEMTs sobre sustratos de SiC con barreras de AlGaN y de InAlN. Los resultados obtenidos en los transistores con barrera de AlGaN han presentado una disminución de la corriente de drenador y de la transconductancia sin mostrar un cambio en la tensión umbral. Por lo tanto, se puede deducir que la posible localización de las trampas es la región de acceso entre la puerta y el drenador. Por el contrario, la reducción de la corriente de drenador observada en los dispositivos con barrera de InAlN llevaba asociado un cambio significativo en la tensión umbral, lo que implica la existencia de trampas situadas en la zona debajo de la puerta. Además, el significativo aumento del valor de la resistencia-ON y la degradación de la transconductancia revelan la presencia de trampas en la zona de acceso entre la puerta y el drenador. La evaluación de los efectos del atrapamiento de carga en dispositivos con diferentes geometrías ha demostrado que dichos efectos son menos notables en aquellos transistores con mayor longitud de puerta o mayor distancia entre puerta y drenador. Esta dependencia con la geometría se puede explicar considerando que la longitud y densidad de trampas de la puerta virtual son independientes de las dimensiones del dispositivo. Finalmente se puede deducir que para conseguir el diseño óptimo durante la fase de diseño no sólo hay que tener en cuenta la aplicación final sino también la influencia que tiene la geometría en los diferentes aspectos estudiados (funcionamiento a alta temperatura, autocalentamiento, y atrapamiento de carga). ABSTRACT GaN-based high electron mobility transistors have been under extensive research due to the excellent electrical properties of GaN and its related alloys (high carrier concentration, high mobility, and high critical electric field). Although these devices have been recently included in commercial applications, some performance and reliability issues need to be addressed for their expansion in the market. Some of these relevant aspects have been studied during this thesis; for instance, the fabrication of enhancement mode HEMTs, the device performance at high temperature, the self-heating and the charge trapping. Enhancement mode HEMTs have become more attractive mainly because their use leads to a significant reduction of the power consumption during the stand-by state. Moreover, they enable the fabrication of simpler power amplifier circuits and high-power switches because they allow the elimination of negativepolarity voltage supply, reducing significantly the circuit complexity and system cost. In this thesis, different techniques for the fabrication of these devices have been assessed: wet-etching for achieving the gate-recess in InAl(Ga)N/GaN devices and two different fluorine-based treatments (CF4 plasma and F implantation). Regarding the wet-etching, experiments have been carried out in InAl(Ga)N/GaN grown on different substrates: Si, sapphire, and SiC. The total recess of the barrier was achieved after 3 min of etching in devices grown on Si substrate. This suggests that the etch rate can critically depend on the dislocations present in the structure, since the Si exhibits the highest mismatch to GaN. Concerning the fluorine-based treatments, a post-gate thermal annealing was required to recover the damages caused to the structure during the fluorine-treatments. The study of the threshold voltage as a function of this annealing time has revealed that in the case of the plasma-treated devices it become more negative with the time increase. On the contrary, the threshold voltage of implanted HEMTs showed a positive shift when the annealing time was increased, which is attributed to the deep F implantation profile. Plasma-treated HEMTs have exhibited better DC performance at room temperature than the implanted devices. Their study at high temperature has revealed that their performance decreases with temperature. The initial performance measured at room temperature was recovered after the thermal cycle regardless of the fluorine treatment; therefore, the thermal effects were reversible. Thermal issues related to the device performance at different temperature have been addressed. Firstly, AlGaN/GaN HEMTs grown on Si substrate with different cap layers: GaN, in situ SiN, or in situ SiN/GaN, have been assessed from 25 K to 550 K. In situ SiN cap layer has been demonstrated to improve the device performance since HEMTs with this cap layer have exhibited the highest drain current and transconductance values, the lowest on-resistance, as well as the best off-state characteristics. Moreover, the evaluation of thermal stress impact on the device performance has confirmed the robustness of devices with in situ cap. Secondly, the high temperature performance of InAlN/GaN HEMTs with different layouts and geometries have been assessed. The devices under study have exhibited an almost linear reduction of the main DC parameters operating in a temperature range from room temperature to 225°C. This was mainly due to the thermal dependence of the electron mobility, and secondly to the drift velocity decrease with temperature. Moreover, HEMTs with large gate length values have exhibited a great reduction of the device performance. This was attributed to the greater decrease of the drift velocity for low electric fields. Similarly, the increase of the gate-to-drain distance led to a greater reduction of drain current and transconductance values. Therefore, this thermal performance degradation has been found to be dependent on both the gate length and the gate-to-drain distance. It was observed that the very high power density in the active region of these transistors leads to Joule self-heating, resulting in an increase of the device temperature, which can degrade the device performance and reliability. A simple electrical method have been developed during this work to determine the channel temperature. Furthermore, the application of this technique together with the performance of electro-thermal simulations have enabled the evaluation of different aspects related to the self-heating. For instance, the influence of the substrate have been confirmed by the study of devices grown on Si, SiC, and Sapphire. HEMTs grown on SiC substrate have been confirmed to exhibit the lowest self-heating effects thanks to its highest thermal conductivity. In addition to this, the distribution of the generated heat in the channel has been demonstrated to be dependent on the gate-to-drain distance. Besides the substrate and the geometry of the device, the ambient temperature has also been found to be relevant for the self-heating effects, mainly due to the temperature-dependent thermal conductivity of the layers and the substrate. Trapping effects have been evaluated by means of pulsed measurements in AlGaN and InAIN barrier devices. AlGaN barrier HEMTs have exhibited a de crease in drain current and transconductance without measurable threshold voltage change, suggesting the location of the traps in the gate-to-drain access region. On the contrary, InAIN barrier devices have showed a drain current associated with a positive shift of threshold voltage, which indicated that the traps were possibly located under the gate region. Moreover, a significant increase of the ON-resistance as well as a transconductance reduction were observed, revealing the presence of traps on the gate-drain access region. On the other hand, the assessment of devices with different geometries have demonstrated that the trapping effects are more noticeable in devices with either short gate length or the gate-to-drain distance. This can be attributed to the fact that the length and the trap density of the virtual gate are independent on the device geometry. Finally, it can be deduced that besides the final application requirements, the influence of the device geometry on the performance at high temperature, on the self-heating, as well as on the trapping effects need to be taken into account during the device design stage to achieve the optimal layout.