43 resultados para Eigenfunction
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
The Variational Method is applied within the context of Supersymmetric Quantum Mechanics to provide information about the energy and eigenfunction of the lowest levels of a Hamiltonian. The approach is illustrated by the case of the Morse potential applied to several diatomic molecules and the results are compared with stabilished results. (C) 2000 Elsevier Science B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work has as its goal to treat well known and interesting unidimensional cases from quantum mechanics through an unusual approach within this eld of physics. The operational method of Laplace transform, in spite of its use by Erwin Schrödinger in 1926 when treating the radial equation for the hydrogen atom, turned out to be forgotten for decades. However, the method has gained attention again for its use as a powerful tool from mathematical physics applied to the quantum mechanics, appearing in recent works. The method is specially suitable to the approach of cases where we have potential functions with even parity, because this implies in eigenfunctions with de ned parity, and since the domain of this transform ranges from 0 to ∞, it su ces that we nd the eigenfunction in the positive semi axis and, with the boundary conditions imposed over the eigenfunction at the origin plus the continuity (discontinuity) of the eigenfunction and its derivative, we make the odd, even or both parity extensions so we can get the eigenfunction along all the axis. Factoring the eigenfunction behavior at in nity and origin, we take the due care with the points that might bring us problems in the later steps of the solving process, thus we can manipulate the Schrödinger's Equation regardless of time, so that way we make it convenient to the application of Laplace transform. The Chapter 3 shows the methodology that must be followed in order to search for the solutions to each problem
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Most work on supersingular potentials has focused on the study of the ground state. In this paper, a global analysis of the ground and excited states for the successive values of the orbital angular momentum of the supersingular plus quadratic potential is carried out, making use of centrifugal plus quadratic potential eigenfunction bases. First, the radially nodeless states are variationally analyzed for each value of the orbital angular momentum using the corresponding functions of the bases; the output includes the centrifugal and frequency parameters of the auxiliary potentials and their eigenfunction bases. In the second stage, these bases are used to construct the matrix representation of the Hamiltonian of the system, and from its diagonalization the energy eigenvalues and eigenvectors of the successive states are obtained. The systematics of the accuracy and convergence of the overall results are discussed with emphasis on the dependence on the intensity of the supersingular part of the potential and on the orbital angular momentum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simple LCAO-MO for the hydrogen molecule cation is tested for eigenfunctionality and found to be flawed.
Resumo:
A uniform geometrical theory of diffraction (UTD) solution is developed for the canonical problem of the electromagnetic (EM) scattering by an electrically large circular cylinder with a uniform impedance boundary condition (IBC), when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transform, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the geometrical optics (GO) or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green's function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green's functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.