999 resultados para Economia - Modelos estatísticos
Resumo:
A motivação deste trabalho é relacionar a teoria da estatística com uma clássica aplicação prática na indústria, mais especificamente no mercado financeiro brasileiro. Com o avanço de hardware, sistemas de suporte à decisão se tornaram viáveis e desempenham hoje papel fundamental em muitas áreas de interesse como logística, gestão de carteiras de ativos, risco de mercado e risco de crédito. O presente trabalho tem como objetivos principais propor uma metodologia de construção de modelos de escoragem de crédito e mostrar uma aplicação prática em operações de empréstimo pessoal com pagamento em cheques. A parte empírica utiliza dados reais de instituição financeira e duas metodologias estatísticas, análise de regressão linear múltipla e análise de regressão probit. São comparados os resultados obtidos a partir da aplicação de modelos de escoragem de crédito desenvolvidos com cada metodologia com os resultados obtidos sem a utilização de modelos. Assim, demonstra-se o incremento de resultado da utilização de modelos de escoragem e conclui-se se há ou não diferenças significativas entre a utilização de cada metodologia. A metodologia de construção de modelos de escoragem é composta basicamente por duas etapas, definição das relações e da equação para cálculo do escore e a definição do ponto de corte. A primeira consiste em uma busca por relações entre as variáveis cadastrais e de comportamento do cliente, variáveis da operação e o risco de crédito caracterizado pela inadimplência. A segunda indica o ponto em que o risco deixa de ser interessante e o resultado esperado da operação passa a ser negativo. Ambas as etapas são descritas com detalhes e exemplificadas no caso de empréstimos pessoais no Brasil. A comparação entre as duas metodologias, regressão linear e regressão probit, realizada no caso de empréstimos pessoais, considerou dois aspectos principais dos modelos desenvolvidos, a performance estatística medida pelo indicador K-S e o resultado incremental gerado pela aplicação do modelo. Foram obtidos resultados similares com ambas as metodologias, o que leva à conclusão de que a discussão de qual das duas metodologias utilizar é secundária e que se deve tratar a gestão do modelo com maior profundidade.
Resumo:
Analisamos a previsibilidade dos retornos mensais de ativos no mercado brasileiro em um período de 10 anos desde o início do plano Real. Para analisarmos a variação cross-section dos retornos e explicarmos estes retornos em função de prêmios de risco variantes no tempo, condicionados a variáveis de estado macroeconômicas, utilizamos um novo modelo de apreçamento de ativos, combinando dois diferentes tipos de modelos econômicos, um modelo de finanças - condicional e multifatorial, e um modelo estritamente macroeconômico do tipo Vector Auto Regressive. Verificamos que o modelo com betas condicionais não explica adequadamente os retornos dos ativos, porém o modelo com os prêmios de risco (e não os betas) condicionais, produz resultados com interpretação econômica e estatisticamente satis fatórios
Resumo:
Discute-se como a assimetria de informações afeta os modelos de precificação de ativos e algumas das consequências para os testes de eficiência. No primeiro capítulo são apresentados dois modelos que partiram da hipótese que os agentes possuem informação completa sobre as variáveis econômicas: o CAPM e o Black-Scholes. No segundo capítulo procura-se verificar até que ponto é possível modelar a economia dadas estas imperfeições. Partindo de uma variação de AkerIoff (1970), mostra-se que quando uma parte de posse de uma informação superior transaciona com outra, ocorre uma falha de mercado, a seleção adversa, podendo até gerar o colapso do mercado. O segundo modelo analisado, Bray (1989), mostra como as informações privilegiadas são incorporadas ao preço e o último modelo, Kyle (1985), analisa como a presença de um agente com informação privilegiada afeta a liquidez do mercado. O terceiro capítulo faz um teste para a eficiência do mercado de câmbio brasileiro. Apesar de não se poder negar a presença de co integração entre as séries, não se pode aceitar a hipótese de eficiência semi-forte, ou seja, a hipótese de que o mercado futuro seria um estimador não viesado para o mercado à vista, o que pode ser interpretado como indicação de informação incompleta ou imperfeita.
Resumo:
O objetivo deste trabalho foi mostrar modelagens alternativas à tradicional maneira de se apurar o risco de mercado para ativos financeiros brasileiros. Procurou-se cobrir o máximo possível de fatores de risco existentes no Brasil; para tanto utilizamos as principais proxies para instrumentos de Renda Fixa. Em momentos de volatilidade, o gerenciamento de risco de mercado é bastante criticado por trabalhar dentro de modelagens fundamentadas na distribuição normal. Aqui reside a maior contribuição do VaR e também a maior crítica a ele. Adicionado a isso, temos um mercado caracterizado pela extrema iliquidez no mercado secundário até mesmo em certos tipos de títulos públicos federais. O primeiro passo foi fazer um levantamento da produção acadêmica sobre o tema, seja no Brasil ou no mundo. Para a nossa surpresa, pouco, no nosso país, tem se falado em distribuições estáveis aplicadas ao mercado financeiro, seja em gerenciamento de risco, precificação de opções ou administração de carteiras. Após essa etapa, passamos a seleção das variáveis a serem utilizadas buscando cobrir uma grande parte dos ativos financeiros brasileiros. Assim, deveríamos identificar a presença ou não da condição de normalidade para, aí sim, realizarmos as modelagens das medidas de risco, VaR e ES, para os ativos escolhidos, As condições teóricas e práticas estavam criadas: demanda de mercado (crítica ao método gausiano bastante difundido), ampla cobertura de ativos (apesar do eventual questionamento da liquidez), experiência acadêmica e conhecimento internacional (por meio de detalhado e criterioso estudo da produção sobre o tema nos principais meios). Analisou-se, desta forma, quatro principais abordagens para o cálculo de medidas de risco sendo elas coerentes (ES) ou não (VaR). É importante mencionar que se trata de um trabalho que poderá servir de insumo inicial para trabalhos mais grandiosos, por exemplo, aqueles que incorporarem vários ativos dentro de uma carteira de riscos lineares ou, até mesmo, para ativos que apresentem risco não-direcionais.
Resumo:
O objetivo deste trabalho é testar modelos clássicos de real business cycles para a economia brasileira. Em um primeiro estágio busca-se fatos estilizados, o que foi feito através da escolha de séries adequadas e da separação dos componetes cíclicos e da análise dos ciclos resultantes. Os parâmetros dos diversos modelos foram estimados utilizando o Método Generalizado dos Momentos (MGM). Estes parâmetros foram utilizados para construir diversas economias artificiais que, após simulação, foram confrontadas com os dados da economia brasileira. Entre todos testados, o modelo que melhor se adequou aos dados foi de cash in advance com taxação distorciva. Entretanto, alguns fatos estilizados importantes, como por exemplo o excesso de volatilidade do consumo, não foram adequadamente reproduzidos pelos modelos testados.
Resumo:
Dado a importância da gestão de risco associada às operações de crédito, modelos estatísticos que avaliam o risco de inadimplência tornaram-se fundamentais na mensuração do risco associado a um cliente. Neste contexto, foi desenvolvido um modelo dinâmico de crédito utilizando variáveis características dos clientes, comportamentais e macroeconômicas através da Análise de Sobrevivência aplicada a dados discretos. Os resultados obtidos indicam que a inclusão de variáveis macroeconômicas provoca um efeito significativo, porém baixo, no ajuste do modelo. Entretanto, nota-se uma melhora expressiva no poder de previsão da taxa de inadimplência do portfólio quando aplicado a um conjunto de dados de validação.
Resumo:
A presente dissertação tem como objetivo apresentar dois importantes modelos usados na análise de risco. Essa análise culmina em uma aplicação empírica para cada um deles. Apresenta-se primeiro o modelo Nelson-Siegel dinâmico, que estima a curva de juros usando um modelo paramétrico exponencial parcimonioso. É citada a referência criadora dessa abordagem, que é Nelson & Siegel (1987), passa-se pela apresentação da mais importante abordagem moderna que é a de Diebold & Li (2006), que é quem cria a abordagem dinâmica do modelo Nelson-Siegel, e que é inspiradora de diversas extensões. Muitas dessas extensões também são apresentadas aqui. Na parte empírica, usando dados da taxa a termo americana de Janeiro de 2004 a Março de 2015, estimam-se os modelos Nelson-Siegel dinâmico e de Svensson e comparam-se os resultados numa janela móvel de 12 meses e comparamos seus desempenhos com aqueles de um passeio aleatório. Em seguida, são apresentados os modelos ARCH e GARCH, citando as obras originais de Engle (1982) e Bolleslev (1986) respectivamente, discutem-se características destes modelos e apresentam-se algumas extensões ao modelo GARCH, incluindo aí alguns modelos GARCH multivariados. Passa-se então por uma rápida apresentação do conceito de VaR (Value at Risk), que será o objetivo da parte empírica. Nesta, usando dados de 02 de Janeiro de 2004 até 25 de Fevereiro de 2015, são feitas uma estimação da variância de um portfólio usando os modelos GARCH, GJR-GARCH e EGARCH e uma previsão do VaR do portfólio a partir da estimação feita anteriormente. Por fim, são apresentados alguns trabalhos que usam os dois modelos conjuntamente, ou seja, que consideram que as taxas ou os fatores que as podem explicam possuem variância variante no tempo.
Resumo:
Dentro de um cenário de recessão econômica é razoável existir uma preocupação maior com o risco de crédito. Algumas variáveis macroeconômicas, como taxa de desemprego, taxa de juros e inflação, são apontadas como responsáveis por choques no sistema financeiro. Esses choques podem provocar efeitos adversos como aumento da inadimplência, provisionamentos de crédito e, num caso extremo, quebra de instituições financeiras. Este trabalho contribuiu na linha da economia comportamental e do risco de crédito, analisando uma possível reação da taxa de inadimplência sob um efeito de variações da taxa de desemprego brasileira. Os dados utilizados foram de inadimplência e taxa de desemprego de pessoas físicas de seis regiões metropolitanas do Brasil. Construímos modelos estatísticos em painel utilizando efeitos fixos. Realizamos também uma breve análise dos dados utilizando conceitos de séries temporais, aplicando funções de impulso resposta. E, no intuito de tornar o estudo mais robusto, analisamos também o efeito do choque da taxa de desemprego nas variáveis de inadimplência e atraso curto prazo do BACEN de forma comparativa. Nas metodologias aplicadas, os resultados nos mostraram uma baixa significância estatística ao utilizarmos a taxa de desemprego para responder a inadimplência. Já para explicar o atraso curto prazo, encontramos significância estatística.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
A utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA