984 resultados para Ecological risk


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Integrated Solar City (ISC) is a large solar project that has been proposed for development in the western state of Gujarat, India. The project will be the largest solar project in the world. It will require the use of large land resources to construct. An ecological risk assessment (ERA) is used to assess potential impacts from project construction and operation. Previous research suggests that a solar project of this scale would require the removal of vegetation along with other negative effects on vegetation and soil. The ERA was used to lay out a revegetation plan that would help mitigate the long-term environmental impacts in the Banaskantha and Kachchh regions of Gujarat, India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a harmonised framework of sediment quality assessment and dredging material characterisation for estuaries and port zones of North and South Atlantic. This framework, based on the weight-of-evidence approach, provides a structure and a process for conducting sediment/dredging material assessment that leads to a decision. The main structure consists of step 1 (examination of available data); step 2 (chemical characterisation and toxicity assessment); decision 1 (any chemical level higher than reference values? are sediments toxic?); step 3 (assessment of benthic community structure); step 4 (integration of the results); decision 2 (are sediments toxic or benthic community impaired?); step 5 (construction of the decision matrix) and decision 3 (is there environmental risk?). The sequence of assessments may be interrupted when the information obtained is judged to be sufficient for a correct characterisation of the risk posed by the sediments/dredging material. This framework brought novel features compared to other sediment/dredging material risk assessment frameworks: data integration through multivariate analysis allows the identification of which samples are toxic and/or related to impaired benthic communities; it also discriminates the chemicals responsible for negative biological effects; and the framework dispenses the use of a reference area. We demonstrated the successful application of this framework in different port and estuarine zones of the North (Gulf of Cadiz) and South Atlantic (Santos and Paranagua Estuarine Systems).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biological invasions are considered as one of the greatest threats to biodiversity, as they may lead to disruption and homogenization of natural communities, and in the worst case, to native species extinctions. The introduction of gene modified organisms (GMOs) to agricultural, fisheries and forestry practices brings them into contact with natural populations. GMOs may appear as new invasive species if they are able to (1) invade into natural habitats or (2) hybridize with their wild relatives. The benefits of GMOs, such as increased yield or decreased use of insecticides or herbicides in cultivation, may thus be reduced due the potential risks they may cause. A careful ecological risk analysis therefore has to precede any responsible GMO introduction. In this thesis I study ecological invasion in relation to GMOs, and what kind of consequences invasion may have in natural populations. A set of theoretical models that combine life-history evolution, population dynamics, and population genetics were developed for the hazard identification part of ecological risks assessment of GMOs. In addition, the potential benefits of GMOs in management of an invasive pest were analyzed. In the first study I showed that a population that is fluctuating due to scramble-type density dependence (due to, e.g., nutrient competition in plants) may be invaded by a population that is relatively more limited by a resource (e.g., light in plants) that is a cause of contest-type density dependence. This result emphasises the higher risk of invasion in unstable environments. The next two studies focused on escape of a growth hormone (GH) transgenic fish into a natural population. The results showed that previous models may have given too pessimistic a view of the so called Trojan gene -effect, where the invading genotype is harmful for the population as a whole. The previously suggested population extinctions did not occur in my studies, since the changes in mating preferences caused by the GH-fish were be ameliorated by decreased level of competition. The GH-invaders may also have to exceed a threshold density before invasion can be successful. I also showed that the prevalence of mature parr (aka. sneaker) strategy among GH-fish may have clear effect on invasion outcome. The fourth study assessed the risks and developed methods against the invasion of the Colorado Potato Beetle (CPB, Leptinotarsa decemlineata). I showed that the eradication of CPB is most important for the prevention of their establishment, but the cultivation of transgenic Bt-potato could also be effective. In general, my results emphasise that invasion of transgenic species or genotypes to be possible under certain realistic conditions and resulting in competitive exclusion, population decline through outbreeding depression and genotypic displacement of native species. Ecological risk assessment should regard the decline and displacement of the wild genotype by an introduced one as a consequence that is as serious as the population extinction. It will also be crucial to take into account different kinds of behavioural differences among species when assessing the possible hazards that GMOs may cause if escaped. The benefits found of GMO crops effectiveness in pest management may also be too optimistic since CPB may evolve resistance to Bt-toxin. The models in this thesis could be further applied in case specific risk assessment of GMOs by supplementing them with detailed data of the species biology, the effect of the transgene introduced to the species, and also the characteristics of the populations or the environments in the risk of being invaded.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil is an unrenewable natural resource under increasing anthropogenic pressure. One of the main threats to soils, compromising their ability to provide us with the goods and ecosystem services we expect, is pollution. Oil hydrocarbons are the most common soil contaminants, and they disturb not just the biota but also the physicochemical properties of soils. Indigenous soil micro-organisms respond rapidly to changes in the soil ecosystem, and are chronically in direct contact with the hydrophobic pollutants on the soil surfaces. Soil microbial variables could thus serve as an intrinsically relevant indicator of soil quality, to be used in the ecological risk assessment of contaminated and remediated soils. Two contrasting studies were designed to investigate soil microbial ecological responses to hydrocarbons, together with parallel changes in soil physicochemical and ecotoxicological properties. The aim was to identify quantitative or qualitative microbiological variables that would be practicable and broadly applicable for the assessment of the quality and restoration of oil-polluted soil. Soil bacteria commonly react on hydrocarbons as a beneficial substrate, which lead to a positive response in the classical microbiological soil quality indicators; negative impacts were accurately reflected only after severe contamination. Hydrocarbon contaminants become less bioavailable due to weathering processes, and their potentially toxic effects decrease faster than the total concentration. Indigenous hydrocarbon degrader bacteria, naturally present in any terrestrial environment, use specific mechanisms to improve access to the hydrocarbon molecules adsorbed on soil surfaces. Thus when contaminants are unavailable even to the specialised degraders, they should pose no hazard to other biota either. Change in the ratio of hydrocarbon degrader numbers to total microbes was detected to predictably indicate pollutant effects and bioavailability. Also bacterial diversity, a qualitative community characteristic, decreased as a response to hydrocarbons. Stabilisation of community evenness, and community structure that reflected clean reference soil, indicated community recovery. If long-term temporal monitoring is difficult and appropriate clean reference soil unavailable, such comparison could possibly be based on DNA-based community analysis, reflecting past+present, and RNA-based community analysis, showing exclusively present conditions. Microbial ecological indicators cannot replace chemical oil analyses, but they are theoretically relevant and operationally practicable additional tools for ecological risk assessment. As such, they can guide ecologically informed and sustainable ecosophisticated management of oil-contaminated lands.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Assessment of country status papers on hilsa fisheries presented at the BOBP – IGO Chittagong, Bangladesh 2010. Assessment of status hilsa management in Bangladesh, India and Myanmar. Brief recommendations of potential follow-up activities that could enhance management. Risk assessment of hilsa in each country with Productivity Susceptibility Analysis (PSA). Summary of new approach to assess ecological risk.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The availability and uptake of Cd by lettuce (Lactuca sativa L.) in two common tropical soils (before and after liming) were studied in order to derive human health-based risk soil concentration. Cadmium concentrations ranging from 1 to 12 mg kg(-1) were added to samples from a clayey Oxisol and a sandy-loam Ultisol under glasshouse conditions. After incubation, a soil sample was taken from each pot, the concentration of Cd in the soil was determined, lettuce was grown during 36 d, and the edible parts were harvested and analyzed for Cd. A positive linear correlation was observed between total soil Cd and the Cd concentration in lettuce. The amount of Cd absorbed by lettuce grown in the Ultisol was about twice the amount absorbed in the Oxisol. Liming increased the soil pH and slightly reduced Cd availability and uptake. CaCl2 extraction was better than DTPA to reflect differences in binding strength of Cd between limed and unlimed soils. Risk Cd concentrations in the Ultisol were lower than in the Oxisol, reflecting the greater degree of uptake from the Ultisol. The derived risk Cd values were dependent on soil type and the exposure scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Widespread interest in producing transgenic organisms is balanced by concern over ecological hazards, such as species extinction if such organisms were to be released into nature. An ecological risk associated with the introduction of a transgenic organism is that the transgene, though rare, can spread in a natural population. An increase in transgene frequency is often assumed to be unlikely because transgenic organisms typically have some viability disadvantage. Reduced viability is assumed to be common because transgenic individuals are best viewed as macromutants that lack any history of selection that could reduce negative fitness effects. However, these arguments ignore the potential advantageous effects of transgenes on some aspect of fitness such as mating success. Here, we examine the risk to a natural population after release of a few transgenic individuals when the transgene trait simultaneously increases transgenic male mating success and lowers the viability of transgenic offspring. We obtained relevant life history data by using the small cyprinodont fish, Japanese medaka (Oryzias latipes) as a model. Our deterministic equations predict that a transgene introduced into a natural population by a small number of transgenic fish will spread as a result of enhanced mating advantage, but the reduced viability of offspring will cause eventual local extinction of both populations. Such risks should be evaluated with each new transgenic animal before release.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The historical challenge of environmental impact assessment (EIA) has been to predict project-based impacts accurately. Both EIA legislation and the practice of EIA have evolved over the last three decades in Canada, and the development of the discipline and science of environmental assessment has improved how we apply environmental assessment to complex projects. The practice of environmental assessment integrates the social and natural sciences and relies on an eclectic knowledge base from a wide range of sources. EIA methods and tools provide a means to structure and integrate knowledge in order to evaluate and predict environmental impacts.----- This Chapter will provide a brief overview of how impacts are identified and predicted. How do we determine what aspect of the natural and social environment will be affected when a mine is excavated? How does the practitioner determine the range of potential impacts, assess whether they are significant, and predict the consequences? There are no standard answers to these questions, but there are established methods to provide a foundation for scoping and predicting the potential impacts of a project.----- Of course, the community and publics play an important role in this process, and this will be discussed in subsequent chapters. In the first part of this chapter, we will deal with impact identification, which involves appplying scoping to critical issues and determining impact significance, baseline ecosystem evaluation techniques, and how to communicate environmental impacts. In the second part of the chapter, we discuss the prediction of impacts in relation to the complexity of the environment, ecological risk assessment, and modelling.