973 resultados para ER-stress


Relevância:

70.00% 70.00%

Publicador:

Resumo:

HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le diabète de type 2 (DT2) est caractérisé par une résistance des tissus périphériques à l’action de l’insuline et par une insuffisance de la sécrétion d’insuline par les cellules β du pancréas. Différents facteurs tels que le stress du réticulum endoplasmique (RE) et l’immunité innée affectent la fonction de la cellule β-pancréatique. Toutefois, leur implication dans la régulation de la transcription du gène de l’insuline demeure imprécise. Le but de cette thèse était d’identifier et de caractériser le rôle du stress du RE et de l’immunité innée dans la régulation de la transcription du gène de l’insuline. Les cellules β-pancréatiques ont un RE très développé, conséquence de leur fonction spécialisée de biosynthèse et de sécrétion d’insuline. Cette particularité les rend très susceptible au stress du RE qui se met en place lors de l’accumulation de protéines mal repliées dans la lumière du RE. Nous avons montré qu’ATF6 (de l’anglais, activating transcription factor 6), un facteur de transcription impliqué dans la réponse au stress du RE, lie directement la boîte A5 de la région promotrice du gène de l’insuline dans les îlots de Langerhans isolés de rat. Nous avons également montré que la surexpression de la forme active d’ATF6α, mais pas ATF6β, réprime l’activité du promoteur de l’insuline. Toutefois, la mutation ou l’absence de la boîte A5 ne préviennent pas l’inhibition de l’activité promotrice du gène de l’insuline par ATF6. Ces résultats montrent qu’ATF6 se lie directement au promoteur du gène de l’insuline, mais que cette liaison ne semble pas contribuer à son activité répressive. Il a été suggéré que le microbiome intestinal joue un rôle dans le développement du DT2. Les patients diabétiques présentent des concentrations plasmatiques élevées de lipopolysaccharides (LPS) qui affectent la fonction de la cellule β-pancréatique. Nous avons montré que l’exposition aux LPS entraîne une réduction de la transcription du gène de l’insuline dans les îlots de Langerhans de rats, de souris et humains. Cette répression du gène de l’insuline par les LPS est associée à une diminution des niveaux d’ARNms de gènes clés de la cellule β-pancréatique, soit PDX-1 (de l’anglais, pancreatic duodenal homeobox 1) et MafA (de l’anglais, mammalian homologue of avian MafA/L-Maf). En utilisant un modèle de souris déficientes pour le récepteur TLR4 (de l’anglais, Toll-like receptor), nous avons montré que les effets délétères des LPS sur l’expression du gène de l’insuline sollicitent le récepteur de TLR4. Nous avons également montré que l’inhibition de la voie NF-kB entraîne une restauration des niveaux messagers de l’insuline en réponse à une exposition aux LPS dans les îlots de Langerhans de rat. Ainsi, nos résultats montrent que les LPS inhibent le gène de l’insuline dans les cellules β-pancréatiques via un mécanisme moléculaire dépendant du récepteur TLR4 et de la voie NF-kB. Ces observations suggèrent ainsi un rôle pour le microbiome intestinal dans la fonction de la cellule β du pancréas. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la répression du gène de l'insuline en réponse aux divers changements survenant de façon précoce dans l’évolution du diabète de type 2 et d'identifier des cibles thérapeutiques potentielles qui permettraient de prévenir ou ralentir la détérioration de l'homéostasie glycémique au cours de cette maladie, qui affecte plus de deux millions de Canadiens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinemia and recurrent infections. Herein we addressed the role of unfolded protein response (UPR) in the pathogenesis of the disease. Augmented unspliced X-box binding protein 1 (XBP-1) mRNA concurrent with co-localization of IgM and BiP/GRP78 were found in one CVID patient. At confocal microscopy analysis this patient`s cells were enlarged and failed to present the typical surface distribution of IgM, which accumulated within an abnormally expanded endoplasmic reticulum. Sequencing did not reveal any mutation on XBP-1, neither on IRE-1 alpha that could potentially prevent the splicing to occur. Analysis of spliced XBP-1, IRE-1 alpha and BiP messages after LPS or Brefeldin A treatment showed that, unlike healthy controls that respond to these endoplasmic reticulum (ER) stressors by presenting waves of transcription of these three genes, this patient`s cells presented lower rates of transcription, not reaching the same level of response of healthy subjects even after 48 h of ER stress. Treatment with DMSO rescued IgM and IgG secretion as well as the expression of spliced XBP-1. Our findings associate diminished splicing of XBP-1 mRNA with accumulation of IgM within the ER and lower rates of chaperone transcription, therefore providing a mechanism to explain the observed hypogammaglobulinemia. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 mu M CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFN gamma through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPAR gamma receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2 alpha, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2 alpha induced by LPS/IFN gamma. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation. Cell Death and Disease (2012) 3, e331; doi:10.1038/cddis.2012.71; published online 28 June 2012

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Als BH3-only Protein gehört Bid zu den proapoptotischen Mitgliedern der Bcl-2 Familie, die während der Apoptose die Freisetzung Caspase-aktivierender Proteine aus den Mitochondrien kontrollieren. Bid zählt zu den potentesten BH3-only Proteinen und wird von vielen transformierten und nichttransformierten Zellen konstitutiv exprimiert. Ziel dieser Arbeit war es, Bid durch RNA-Interferenz stabil zu depletieren, um Bid-abhängige Apoptosewege in HeLa Zervixkarzinomzellen zu identifizieren, die von intrinsischen Stressstimuli sowie von konventionellen und neuartigen Chemotherapeutika induziert werden. Da Bid im Todesrezeptor-vermittelten Signalweg der Apoptose durch Caspase-8 gespalten und aktiviert wird, waren die Bid-depletierten Zellen signifikant vor der Fas/CD95-, TRAIL- oder TNF-α-induzierten Apoptose geschützt und zeigten nach Exposition mit allen drei Todesrezeptorliganden eine drastisch reduzierte Effektorcaspase-Aktivität und eine höhere Proliferationsrate als die Kontrollzellen. Eine ektopische Bidexpression in Bid knock down (kd) Zellen hob die Protektion vor der Fas- und TRAIL-induzierten Apoptose auf. Der Proteasominhibitor Epoxomicin, der Proteinkinase-Inhibitor Staurosporin oder die ER Stress-induzierenden Agenzien Tunicamycin, Thapsigargin und Brefeldin A lösten hingegen einen Bid-unabhängigen Zelltod aus. Allerdings konnten subletale Tunicamycin- oder Thapsigarginkonzentrationen HeLa Zellen für die TRAIL-induzierte Apoptose sensitivieren. Da der Synergieeffekt auf einer ER Stress-vermittelten Amplifizierung des Todesrezeptorwegs beruhte, zu der eine Tunicamycin-induzierte Steigerung der Expression des Todesrezeptors DR5 signifikant beitrug, erfolgte diese Sensitivierung nur in Bid-profizienten Zellen. Bid war in HeLa Zellen außerdem an der apoptotischen Signalkaskade beteiligt, die von den DNA-schädigenden Agenzien Etoposid, Doxorubicin und Oxaliplatin (Oxa) ausgelöst wird. Nach Behandlung mit Oxa zeigten die Bid kd Zellen eine verzögerte Caspase-2, -3, -8 und -9 Aktivierung, einen geringeren Verlust des mitochondrialen Membranpotentials sowie eine reduzierte Apoptose- und eine höhere Proliferationsrate als Bid-profiziente Zellen. Neben Bid war ein weiteres BH3-only Protein, Puma, an der Oxa-induzierten Effektorcaspase-Aktivierung beteiligt, da eine Puma-spezifische siRNA unabhängig vom Bidstatus der Zellen antiapoptotisch wirkte. Im letzten Teil der Arbeit wurde untersucht, welche Proteasen für die durch gentoxische Agenzien induzierte Spaltung und Aktivierung von Bid verantwortlich sind. Obwohl Caspasen für die Exekutionphase der Oxa-induzierten Apoptose notwendig waren, trugen sie weder zur initialen Bidaktivierung noch zur mitochondrialen Depolarisierung bei, da sie erst postmitochondrial aktiviert wurden. Konventionelle Calpaine hingegen wurden nach DNA-Schädigung bereits stromaufwärts der Mitochondrien aktiviert und der Calpaininhibitor Calpeptin reduzierte nicht nur die Bid- und Caspasespaltung, sondern auch die mitochondriale Depolarisierung signifikant. Diese Protektion durch Calpeptin fiel in Bid-depletierten Zellen signifikant geringer als in Bid-profizienten Kontrollzellen aus. Auch war in Oxa-behandelten Bid kd Zellen, die eine durch Caspase-2, -3 und -8 nicht spaltbare Bidmutante exprimierten, trunkiertes Bid nachweisbar, dessen Generierung durch Calpain-, aber nicht durch Caspaseinhibierung verhindert werden konnte. Zusammenfassend deuten diese Ergebnisse auf eine Calpain-abhängige Bidaktivierung stromaufwärts der Mitochondrien hin und zeigen, dass die BH3-only Proteine Bid und Puma wichtige Vermittler der Oxa-induzierten Apoptose in HeLa Zellen darstellen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Erhöhte Spiegel von oxidativem Stress bedingen Atherosklerose, eine Krankheit die über 50% aller Todesfälle in der westlichen Welt ausmacht. Es ist entscheidend Mechanismen zur Abwehr dieser Krankheit zu ergründen.rnDa genetische Polymorphismen des körpereigenen Enzyms Paraoxonase 2 (PON2) mit kardiovaskulären Erkrankungen assoziiert sind, wurden ihre Regulation und potentiell antioxidativen Funktionen in vaskulären Zellen analysiert. Mittels verschiedener molekularbiologischer Methoden konnte ich erstmals zeigen, dass PON2 in vaskulären Zellen vornehmlich subzellulär im ER lokalisiert ist. Anhand verschiedener Experimente wurde PON2 als potenter Faktor zur Reduktion von ROS identifiziert. Erhöhte ROS-Spiegel führen zur Aktivierung eines als unfolded protein response (UPR) bekannten ER-Stress-Signalwegs. Dieser ist neben Atherosklerose in eine Vielzahl von Erkrankungen involviert und hat kritischen Einfluss auf das Überleben oder Absterben von Zellen. Durchgeführte Promoter-Reporter Studien bewiesen die Induktion der Protein-Expression von PON2 nach Aktivierung des UPR-Signalwegs, was als kompensatorischer Mechanismus der Zelle zur Vermeidung UPR-induzierter Apoptose verstanden werden könnte. PON2 wehrt oxidativen Stress und die UPR-induzierte Apoptose ab und ist ein protektiver Faktor vor Atherosklerose.rnIn einem Krebsmodell könnte PON2 aber als antiapoptotischer Faktor entscheidend am Überleben von Tumorzellen beteiligt sein. Gerade diese beiden gegensätzlichen Aspekte der antiapoptotischen Funktion des Proteins zeigen die Notwendigkeit für weitere Untersuchungen zu PON2 auf.rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth most common cause of cancer-associated death in the United States. Little progress has been made in understanding how proteotoxic stress affects rapidly proliferating pancreatic tumor cells. Endoplasmic reticulum (ER) stress occurs when protein homeostasis in the ER lumen is perturbed. ER stress activates the unfolded protein response (UPR) to reduce the protein load in the ER. Under conditions of moderate ER stress, the UPR promotes cell cycle arrest which allows time for successful protein load reduction and enables cell survival. However, under conditions of high levels of ER stress the UPR induces cellular apoptosis. In this dissertation, I investigated the role of endoplasmic reticulum (ER) stress and its effects on the cell cycle in pancreatic cancer cells. Activation of the unfolded protein response after ER stress induction was determined by comparing expression of key UPR mediators in non-tumorigenic pancreatic ductal cells to pancreatic cancer cells. Two arms of the UPR were assessed: eIF2α/ATF4/CHOP and IRE1α/XBP1s. Pancreatic cancer cells exhibited altered UPR activation characterized by a delay in both phosphorylation of eIF2α and induction of spliced XBP1. Further evaluation of the UPR-mediated effects on cell cycle progression revealed that pancreatic cancer cells showed a compromised ability to inhibit G1 to S phase progression after ER stress. This reduced ability to arrest proliferation was found to be due to an impaired ability to downregulate cyclin D1, a key gatekeeper of the G1/S checkpoint. Abrogation of cyclin D1 repression was mediated through a slow induction of phosphorylation of eIF2α, a critical mediator of translational attenuation in response to ER stress. In conclusion, pancreatic cancer cells demonstrate a globally compromised ability to regulate the unfolded protein response. This deficiency results in reduced cyclin D1 repression through an eIF2α-mediated mechanism. These findings indicate that pancreatic cancer cells have increased tolerance for elevated ER stress compared to normal cells, and this tolerance results in continued tumor cell proliferation under proteotoxic conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bortezomib (VELCADE™, formerly known as PS-341) is a selective and potent inhibitor of the proteasome that was recently FDA-approved for the treatment of multiple myeloma. Despite its success in multiple myeloma and progression into clinical trials for other malignancies, bortezomib's exact mechanism of action remains undefined. The major objective of this study was to evaluate the anticancer activity of this drug using in vitro and in vivo pancreatic cancer models and determine whether bortezomib-induced apoptosis occurs via induction of endoplasmic reticular (ER) stress. The investigation revealed that bortezomib inhibited tumor cell proliferation via abrogation of cdk activity and induced apoptosis in pancreatic cancer cell lines. I hypothesized that bortezomib-induced apoptosis was triggered by a large accumulation ubiquitin-conjugated proteins that resulted in ER stress. My data demonstrated that bortezomib induced a unique type of ER stress in that it inhibited PKR-like ER kinase (PERK) and subsequent phosphorylation of eukaryotic initiation factor 2α (eif2α), a key event in translational suppression. The combined effects of proteasome inhibition and the failure to attenuate translation resulted in an accumulation of aggregated proteins (proteotoxicity), JNK activation, cytochrome c release, caspase-3 activation, and DNA fragmentation. Bortezomib also enhanced apoptosis induced by other agents that stimulated the unfolded protein response (UPR), demonstrating that translational suppression is a critical cytoprotective mechanism during ER stress. Tumor cells attempt to survive bortezomib-induced ER stress by sequestering aggregated proteins into large structures, termed aggresomes. Since histone deacetylase 6 (HDAC6) is essential for aggresome formation, tumor cells may be sensitized to bortezomib-induced apoptosis by blocking HDAC function. My results demonstrated that HDAC inhibitors disrupted aggresome formation and synergized with bortezomib to induce apoptosis in pancreatic cancer or multiple myeloma cells in vitro and in orthotopic pancreatic tumors in vivo. Taken together, my data establish a mechanistic link between bortezomib-induced aggresome formation, ER stress, and apoptosis and identify a novel therapeutic strategy for the treatment of pancreatic cancer and other hematologic and solid malignancies. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When subjected to increased workload, the heart responds metabolically by increasing its reliance on glucose and structurally by increasing the size of myocytes. Whether changes in metabolism regulate the structural remodeling process is unknown. A likely candidate for a link between metabolism and growth in the heart is the mammalian target of rapamycin (mTOR), which couples energy and nutrient metabolism to cell growth. Recently, sustained mTOR activation has also been implicated in the development of endoplasmic reticulum (ER) stress. We explored possible mechanisms by which acute metabolic changes in the hemodynamically stressed heart regulate mTOR activation, ER stress and cardiac function in the ex vivo isolated working rat heart. Doubling the heart’s workload acutely increased rates of glucose uptake beyond rates of glucose oxidation. The concomitant increase in glucose 6-phosphate (G6P) was associated with mTOR activation, endoplasmic reticulum (ER) stress and impaired contractile function. Both rapamycin and metformin restored glycolytic homeostasis, relieved ER stress and rescued contractile function. G6P and ER stress were also downregulated with mechanical unloading of failing human hearts. Taken together, the data support the hypothesis that metabolic remodeling precedes, triggers, and sustains structural remodeling of the heart and implicate a critical role for G6P in load-induced contractile dysfunction, mTOR activation and ER stress. In general terms, the intermediary metabolism of energy providing substrates provides signals for the onset and progression of hypertrophy and heart failure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endoplasmic reticulum (ER) stress-induced inflammation plays an important role in the progression of many diseases, such as type II diabetes, insulin resistance, cancers, and so on. NF-κB is believed to be a central regulator of ER stress-induced inflammation. However, studies on how ER stress induces NF-κB activation are limited and, in some cases, controversial. In the present study, we utilized two commonly used ER stress inducers, thapsigargin and tunicamycin, to study the mechanism. We found that two caspase-recruitment domain (CARD)-containing proteins, CARMA3 and BCL10, play a crucial roles on ER stress-induced NF-κB activation by regulating IκBα kinase activity. Consistently, we observed that a physiological ER stress inducer, hypoxia, could activate NF-κB in a CARMA3-dependent manner. Additionally, we showed that the activation of the UPR signaling pathways were intact in both CARMA3- and BCL10-deficient cells under ER stress. Together, this study provides insight into the mechanism of how ER stress induces NF-κB activation. It allows us to better understand ER stress-induced inflammation and develop the corresponding therapeutic interference to treat diseases

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, called the unfolded protein response (UPR), is activated when unfolded proteins are accumulated in the ER under a variety of stress conditions (“ER stress”). We and others recently identified Hac1p/Ern4p as a transcription factor responsible for the UPR in Saccharomyces cerevisiae. It was further reported that Hac1p (238 aa) is detected only in ER-stressed cells, and its expression is mediated by unconventional splicing of HAC1 precursor mRNA. The splicing replaces the C-terminal portion of Hac1p; it was proposed that precursor mRNA is also translated but the putative product of 230 aa is rapidly degraded by the ubiquitin–proteasome pathway. We have identified and characterized the same regulated splicing and confirmed its essential features. Contrary to the above proposal, however, we find that the 238-aa product of mature mRNA and the 230-aa-type protein tested are highly unstable with little or no difference in stability. Furthermore, we demonstrate that the absence of Hac1p in unstressed cells is due to the lack of translation of precursor mRNA. We conclude that Hac1p is synthesized as the result of ER stress-induced mRNA splicing, leading to activation of the UPR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in ER-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.