278 resultados para ENTROPIA DE TSALLIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimativa de entropia de Muscina stabulans (Fallén) (Diptera, Muscidae) em condições artificiais. O conceito de entropia (H) foi adaptado da mecânica estatística para a demografia para quantificar o impacto da mortalidade na expectativa de vida e demonstrar quantitativamente a tendência da mortalidade em populações experimentais. Isto foi verificado para 160 casais de Muscina stabulans (Fallén, 1817) mantidos em câmara climatizada a 24,8ºC ± 0,6ºC, umidade relativa do ar entre 70 e 80% e fotofase de 12 horas. Nestas condições, machos e fêmeas apresentaram valores de H intermediários aos valores teóricos de H = 0 e H = 0,5 demonstrando que para esta espécie, a curva de sobrevivência é do tipo retangular. A distribuição da mortalidade por idade específica indicou que a força desse parâmetro age de dois modos sobre os adultos desta espécie. Em um, a mortalidade tem maior força nos intervalos compreendidos entre a emergência dos adultos e o 10º dia após este processo. No segundo modo, a força de mortalidade é maior entre o 20º e 30º dias após a emergência, sendo que pequenas variações na mortalidade causam maior impacto na sobrevivência das fêmeas do que nos machos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Tsallis thermodynamics framework, and using scaling properties of the entropy, we derive a generalization of the Gibbs-Duhem equation. The analysis suggests a transformation of variables that allows standard thermodynamics to be recovered. Moreover, we also generalize Einsteins formula for the probability of a fluctuation to occur by means of the maximum statistical entropy method. The use of the proposed transformation of variables also shows that fluctuations within Tsallis statistics can be mapped to those of standard statistical mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed mathematical analysis on the q = 1/2 non-extensive maximum entropydistribution of Tsallis' is undertaken. The analysis is based upon the splitting of such adistribution into two orthogonal components. One of the components corresponds to theminimum norm solution of the problem posed by the fulfillment of the a priori conditionson the given expectation values. The remaining component takes care of the normalizationconstraint and is the projection of a constant onto the Null space of the "expectation-values-transformation"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to definite Historicity in Economic Sciences applying the principles of Entropy and methodological indeterminism. This implies the definition of two kinds of economic universes: one characterized by ergodicity and reversibility of Time and processes and the other by the opposite properties. The first part will deal with the construction of the subject of study and the nature of the proper analysis to these two universes. Taking such dichotomy into account, the second part will examine its implications as regards to the nature of equilibrium, the properties of stability and instability and the closure of the systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Química) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho fazemos um breve estudo de Álgebras de Operadores, mais especificamente Álgebras-C* e Álgebras de von Neumann. O objetivo é expor alguns resultados que seriam os análogos não-comutativos de teoremas em Teoria da Medida e Teoria Rrgódica. Inicialmente, enunciamos alguns resultados de Análise Funcional e Teoria Espectral, muitos destes sendo demonstrados, com ênfase especial aos que dizem respeito µas álgebras. Com isso, dispomos das ferramentas necessárias para falarmos de alguns tópicos da então chamada Teoria da Integração Não-Comutativa. Uma desigualdade tipo Jensen é provada e, com o teorema de Radon-Nikodym para funcionais normais positivos, construimos uma esperança condicional, provando que esta possui as mesmas propriedades da esperança condicional da Teoria das Probabilidades. Dada a Esperança Condicional, objeto este que faz parte do cenário atual de pesquisa na área de Álgebra de Operadores e que está relacionado com resultados fundamentais tal como o Índice de Jones, passamos à definição da Entropia de Connes-Stormer. Finalizamos o trabalho analisando esta entropia, que é a versão para as álgebras de von Neumann da entropia Kolmogorov-Sinai em Teoria Ergódica. Provamos algumas pro- priedades que são análogas às do conceito clássico de entropia e indicamos uma aplicação da mesma. O texto não possui resultados originais, trata-se apenas de uma releitura de artigos usando versões mais recentes de alguns teoremas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresenta entropia por meio da desigualdade de Clausius, demonstrando essa desigualdade para máquinas térmicas e ciclos de refrigeração, concluindo que a igualdade se aplica a ciclos reversíveis e a desigualdade a ciclos irreversíveis. Define entropia como uma propriedade termodinâmica extensiva, e apresenta as equações para calcular a entropia. Apresenta o diagrama TS, faz a representação de um ciclo termodinâmico e do ciclo de Carnot nesse diagrama. Apresenta equações para cálculo de eficiência máquinas térmicas e rendimento de refrigeradores. Apresenta considerações de entropia para gases ideais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresenta algumas observações experimentais que fornecem embasamento para a segunda lei da termodinâmica, os enunciados de Clausius e Kelvin-Planck. Demonstra através de esquemas o princípio de funcionamento das máquinas térmicas e dos refrigeradores, das máquinas ideais (descrição do ciclo de Carnot) e a representação dos ciclos de potência e de refrigeração num diagrama p-v. Avalia o rendimento de máquinas térmicas ideais. Posteriormente, define o conceito de entropia e suas aplicações, como calcular variações desta propriedade termodinâmica em diferentes processos, em líquidos, sólidos e gases ideais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rational construction necessary to systematize scientific knowledge in physics, introduces difficulties of understanding in some of its concepts. One of these concepts which exemplify properly this difficulty in learning or teaching is entropy. This thesis propose the construction of a didactic route which constitute itself a historical and epistemological course to entropy, intending to contribute for teaching this concept as well as other physics concepts. The basic assumption to build this route is that through the historical review of the development of this concept in the way suggested by Bachelard s (1884-1962) epistemology it is possible to make subjects, to be taught and learned, more meaningful. Initially I composed a brief biographical note to give the reader an idea about the issues, interests and reflections, related to science, and how I dealt with them in my private and professional life, as well as the role they played to lead me to write this thesis. The strategy to construct the route to entropy was to split the usual contents of basic thermodynamics in three moments in a way they can constitute epistemological units , which can be identified by the way of thinking in the corresponding moments of scientific knowledge production: a technical and empiricist moment, a rationalist and positivist moment and a post-positivist rationalist one. The transition between each moment is characterized by a rupture with the former way of thinking; however the progress in the construction of knowledge in the area is evident. As the final part of this work I present an analysis based on elements of Bachelard s epistemology that are present in each moment. This analysis is the basic component of the didactic route that I propose myself to build. The way I made this route guide to entropy could contribute to the construction of other didactic routes in physics and other sciences, in a way to unveil hidden meanings and as a tool to humanize scientific knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we use a Tsallis maximum entropy distribution law to fit the observations of projected rotational velocity measurements of stars in the Pleiades open cluster. This new distribution funtion which generalizes the Ma.xwel1-Boltzmann one is derived from the non-extensivity of the Boltzmann-Gibbs entropy. We also present a oomparison between results from the generalized distribution and the Ma.xwellia.n law, and show that the generalized distribution fits more closely the observational data. In addition, we present a oomparison between the q values of the generalized distribution determined for the V sin i distribution of the main sequence stars (Pleiades) and ones found for the observed distribution of evolved stars (subgiants). We then observe a correlation between the q values and the star evolution stage for a certain range of stel1ar mass

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard kinetic theory for a nonrelativistic diluted gas is generalized in the spirit of the nonextensive statistic distribution introduced by Tsallis. The new formalism depends on an arbitrary q parameter measuring the degree of nonextensivity. In the limit q = 1, the extensive Maxwell-Boltzmann theory is recovered. Starting from a purely kinetic deduction of the velocity q-distribution function, the Boltzmann H-teorem is generalized for including the possibility of nonextensive out of equilibrium effects. Based on this investigation, it is proved that Tsallis' distribution is the necessary and sufficient condition defining a thermodynamic equilibrium state in the nonextensive context. This result follows naturally from the generalized transport equation and also from the extended H-theorem. Two physical applications of the nonextensive effects have been considered. Closed analytic expressions were obtained for the Doppler broadening of spectral lines from an excited gas, as well as, for the dispersion relations describing the eletrostatic oscillations in a diluted electronic plasma. In the later case, a comparison with the experimental results strongly suggests a Tsallis distribution with the q parameter smaller than unity. A complementary study is related to the thermodynamic behavior of a relativistic imperfect simple fluid. Using nonequilibrium thermodynamics, we show how the basic primary variables, namely: the energy momentum tensor, the particle and entropy fluxes depend on the several dissipative processes present in the fluid. The temperature variation law for this moving imperfect fluid is also obtained, and the Eckart and Landau-Lifshitz formulations are recovered as particular cases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article intends to offer, in an introductory way, a reflection in order to build an interpretation of the Sigmund Freud's thought, orchestrating notions such as the ones of progress of civilization, which would be his philosophy of history; an investigation on his conceptions about "human nature"; culminating in a brief reflection on some points of philosophy of nature that underlies his thought. We anticipate that we recognize in the latter, characteristics assimilated by analogy to the entropy concept of modern physics. Among other features, such as compared and methodological reference with some of Kant's theses about the same notions, we also present in a short way two metapsychological aspects of Freudian theory on human sexuality, the biological and physiological, both aiming to give support to the reflections on the sense of finality.