973 resultados para ELECTROMAGNETIC TORQUE RIPPLE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho trata do cálculo da força contra eletromotriz em carga de uma máquina síncrona com ímãs na superfície do rotor (cuja forma de onda de força contra eletromotriz é não senoidal) sendo esta alimentada por correntes de fase cujas forma de onda são quadradas. Para conduzir esta investigação e calcular a força contra eletromotriz da máquina em estudo, faz-se uma revisão sobre o Método da Permeabilidade Fixa, método este que permite a linearização do ponto de operação da máquina. Dessa forma, as simulações são conduzidas por meio do método dos elementos finitos e do Método da Permeabilidade Fixa, levando-se em conta a forma de onda da corrente de alimentação. Atenção especial é dada ao modo que se analisa o fluxo concatenado e a forma de obtenção da força contra eletromotriz uma vez que as formas de onda do fluxo concatenado sofrem variações abruptas a cada 60º elétricos. Além destes parâmetros, analisa-se também cada uma das parcelas do torque eletromagnético, i.e., torque mútuo, torque de relutância e torque de borda, sendo realizado ao final do trabalho, uma comparação entre a soma da estimativa de cada parâmetro com o valor do torque eletromagnético obtido por meio de uma simulação não linear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a Switched Reluctance Motor (SRM), the flux linkage characteristic is the most basic magnetic characteristic, and many other quantities, including the incremental inductance, back emf, and electromagnetic torque can be determined indirectly from it. In this paper, two methods of measuring the flux linkage profile of an SRM from the phase winding voltage and current measurements, with and without rotor locking devices, are presented. Torque, incremental inductance and back emf characteristics of the SRM are then obtained from the flux linkage measurements. The torque of the SRM is also measured directly as a comparison, and the closeness of the calculated and directly measured torque curves suggests the validity of the method to obtain the SRM torque, incremental inductance and back emf profiles from the flux linkage measurements. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V-shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V-shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in Matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to four times of the rated. A prototype of the V-shape interior PMSM is also manufactured and tested to validate the numerical models built by the FEM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research work concerns the application of additive manufacturing (AM) technologies in new electric mobility sectors. The unmatched freedom that AM offers can potentially change the way electric motors are designed and manufactured. The thesis investigates the possibility of creating optimized electric machines that exploit AM technologies, with potential in various industrial sectors, including automotive and aerospace. In particular, we will evaluate how the design of electric motors can be improved by producing the rotor core using Laser Powder Bed Fusion (LPBF) and how the resulting design choices affect component performance. First, the metallurgical and soft magnetic properties of the pure iron and silicon iron alloy parts (Fe-3% wt.Si) produced by LPBF will be defined and discussed, considering the process parameters and the type of heat treatment. This research shows that using LPBF, both pure iron and iron silicon, the parts have mechanical and magnetic properties different from the laminated ones. Hence, FEM-based modeling will be employed to design the rotor core of an SYN RM machine to minimize torque ripple while maintaining structural integrity. Finally, we suggest that further research should extend the field of applicability to other electrical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrated winding permanent magnet machines and their electromagnetic properties are studied in this doctoral thesis. The thesis includes a number of main tasks related to the application of permanent magnets in concentrated winding open slot machines. Suitable analytical methods are required for the first design calculations of a new machine. Concentrated winding machines differ from conventional integral slot winding machines in such a way that adapted analytical calculation methods are needed. A simple analytical model for calculating the concentrated winding axial flux machines is provided. The next three main design tasks are discussed in more detail in the thesis. The magnetic length of the rotor surface magnet machines is studied, and it is shown that the traditional methods have to be modified also in this respect. An important topic in this study has been to evaluate and minimize the rotor permanent magnet Joule losses by using segmented magnets in the calculations and experiments. Determination of the magnetizing and leakage inductances for a concentrated winding machine and the torque production capability of concentrated winding machines with different pole pair numbers are studied, and the results are compared with the corresponding properties of integral slot winding machines. The thesis introduces a new practical permanent magnet motor type for industrial use. The special features of the machine are based on the option of using concentrated winding open slot constructions of permanent magnet synchronous machines in the normal speed ranges of industrial motors, for instance up to 3000 min-1, without excessive rotor losses. By applying the analytical equations and methods introduced in the thesis, a 37 kW 2400 min-1 12-slot 10-pole axial flux machine with rotor-surfacemounted magnets is designed. The performance of the designed motor is determined by experimental measurements and finite element calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, microstrip lines magnetically coupled to splitring resonators (SRRs) are conquved to electromagnetic bundgup (EBG) nr,rrostrip lines in terns q/ their stop-heard penjbrnmrnce and dimensions. In bath types o/ trunsmis•siou lines, signal propagation is inhibited in it certain jequency bwuL For EBG microstrip lines, the central frequency of such a forbidden band is determined by the period of the structure, whereas in SRR-hased microstrip lines the position of the frequency gap depends on the quasi-static resonant frequency of the rings. The main relevant conrributiun of this paper is to provide a tuning procedure to control the gap width in SRR microstrip lines, and to show that by using SRRs, device dimensions ale much smaller than those required by EBGs in order to obtain similar stop-banal performance. This has been demonstrated by fill-wave electromagnetic simulations and experimentally verified from the characterization ql two fabricated microstrip lines: one with rectangular SRRs etched on the upper substrate side, and the other with a periodic perturbation cf'strip width. For similar rejection and 1-(;H,. gap width centered at 4.5 Gllz, it has been found that the SRR microstrip line is•,fve times shorter. In addition, no ripple is appreciable in the allowed band for the .SRR-hared structure, whereas due to dispersion, certain mismatch is expected in the EBG prototype. Due to the high-frequency selectivity, controllable gap width, and small dimensions, it is believed that SRR coupled to planar transmission lines can have an actual impact on the design of stop-band filters compatible with planar technology, and can be an alternative to present solutions based on distributed approaches or EBG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores firstly the potential of a new evolutionary method - the Cross-Entropy (CE) method in solving continuous inverse electromagnetic problems. For this purpose, an adaptive updating formula for the smoothing parameter, some mutation operation, and a new termination criterion are proposed. The proposed CE based metaheuristics is applied to reduce the ripple of the magnetic levitation forces of a prototype Maglev system. The numerical results have shown that the ripple of the magnetic levitation forces of the prototype system is reduced significantly after the design optimization using the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A MEMS, silicon based device with a cantilever oscillationsand an integrated magnet is presented for magnetic to electrical transduction. The cantilever structure can be configured either as an energy harvester to harvest power from an AC power line or as an AC current sensor. The positioning of the transducer with respect to the AC conductor is critical in both scenarios. For the energy scavenger, correct positioning is required to optimize the harvested power. For the current sensor, it is necessary to optimise the sensitivity of the sensor. This paper considers the effect of the relative position of the transducer with respect to the wire on the resulting electromagnetic forces and torques driving the device. It is shown here that the magnetic torque acting on a cantilever beam with an integrated magnet and in the vicinity of an alternating electromagnetic field is a very significant driver of the cantilever oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º) presented statistically significant difference from the proposed values (-7º). For the mandibular canines, American Orthodontics (-6.34º) and Ortho Organizers (-6.25º) presented statistically significant differences from the standards (-6º). Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.