779 resultados para E-learning resources
Resumo:
The changing roles for academics relates to a new emphasis on: •developing life-long learners, in addition to teaching 'content'; •ensuring long-term graduate outcomes not just short-term subject objectives are achieved by all students; and •collaborative course and subject design.
Resumo:
Early career engineering academics are encouraged to join and contribute to established research groups at the leading edge of their discipline. This is often facilitated by various staff development and support programs. Given that academics are often appointed primarily on the basis of their research skills and outputs, such an approach is justified and is likely to result in advancing the individual academic’s career. It also enhances their capacity to attract competitive research funding, while contributing to the overall research performance of their institution, with further potential for an increased share of government funding. In contrast, there is much less clarity of direction or availability of support mechanisms for those academics in their role as teachers. Following a general induction to teaching and learning at their institution, they would commonly think about preparing some lecture materials, whether for delivery in a face-to-face or on-line modality. Typically they would look for new references and textbooks to act as a guide for preparing the content. They would probably find out how the course has been taught before, and what laboratory facilities and experiments have been used. In all of these and other related tasks, the majority of newly appointed academics are guided strongly by their own experiences as students, rather than any firm knowledge of pedagogical principles. At a time of increased demands on academics’ time, and high expectations of performance and productivity in both research and teaching, it is essential to examine possible actions to support academics in enhancing their teaching performance in effective and efficient ways. Many resources have been produced over the years in engineering schools around the world, with very high intellectual and monetary costs. In Australia, the last few years have seen a surge in the number of ALTC/OLT projects and fellowships addressing a range of engineering education issues and providing many resources. There are concerns however regarding the extent to which these resources are being effectively utilised. Why are academics still re-inventing the wheel and creating their own version of teaching resources and pedagogical practice? Why do they spend so much of their precious time in such an inefficient way? A symposium examining the above issues was conducted at the AAEE2012 conference, and some pointers to possible responses to the above questions were obtained. These are explored in this paper and supplemented by the responses to a survey of a group of engineering education leaders on some of the aspects of these research questions. The outcomes of the workshop and survey results have been analysed in view of the literature and the ALTC/OLT sponsored learning and teaching projects and resources. Other factors are discussed, including how such resources can be found, how their quality might be evaluated, and how assessment may be appropriately incorporated, again using readily available resources. This study found a strong resonance between resources reuse with work on technology acceptance (Davis, 1989), suggesting that technology adoption models could be used to encourage resource sharing. Efficient use of outstanding learning materials is an enabling approach. The paper provides some insights on the factors affecting the re-use of available resources, and makes some recommendations and suggestions on how the issue of resources re-use might be incorporated in the process of applying and completing engineering education projects.
Resumo:
The purpose of this project was to build the leadership capacity of clinical supervisors in the nursing discipline by developing, implementing and systematically embedding a leadership model into the structure and practice of student supervision. The University worked in partnership with three major metropolitan hospitals in Queensland to develop a framework and professional development program incorporating leadership and clinical supervision. The Leadership and Clinical Education (LaCE) program consisted of two structured workshops complemented by individual personal development projects undertaken by participants. Participants were supported in these activities with a purpose-built website that provides access to a wide variety of information and other learning resources. Quantitative and qualitative evaluations indicated that the approach was highly valued by participants, as it promoted useful peer dialogue, sharing of experiences and personal development in relation to assisting leadership development and student learning in the workplace. The LaCE program provides an ideal springboard for introducing the development of welltrained leaders into the clinical workplace. The resources developed have the potential to provide ongoing support for clinical supervisors to improve the learning of undergraduate nursing student. The challenge will be to achieve continued innovation within clinical education through sustainable leadership programs.
Resumo:
This paper reports an innovative and systemic approach to implementing ICT intervention to support enhancement of teaching and learning of STEM subjects in developing countries. The need for adopting ICT was 2 fold: a lack of availability of qualified STEM secondary teachers and a lack of quality teaching and learning resources to assist teachers and students. ICT was seen as being able to impact on both issues. The intervention involved developing sustainable network design including equipment choices, providing high quality e-learning resources and human resource development including teacher training. The intervention has gradually been accepted by teachers, students, and parents and institutionalized as a key feature of the secondary STEM education in the case study country.
Resumo:
In Higher Education web-based course support systems are essential for supporting flexible learning environments. They provide tools to enable the interaction between student and tutor to reinforce transfer of theory to understanding particularly in an academic environment, therefore this paper will examine issues associated with the use of curriculum and learning resources within Web-based course support systems and the effectiveness of the resulting flexible learning environments This paper is a general discussion about flexible learning and in this case how it was applied to one of the courses at undergraduate level one. The first section will introduce what is flexible learning and the importance of flexible learning in Higher Education followed by the description of the course and why the flexible learning concepts is important in such a course and finally, how the flexibility was useful for this particular instance.
Resumo:
Background: A suite of 10 online virtual patients developed using the IVIMEDS ‘Riverside’ authoring tool has been introduced into our undergraduate general practice clerkship. These cases provide a multimedia-rich experience to students. Their interactive nature promotes the development of clinical reasoning skills such as discriminating key clinical features, integrating information from a variety of sources and forming diagnoses and management plans.
Aims: To evaluate the usefulness and usability of a set of online virtual patients in an undergraduate general practice clerkship.
Method: Online questionnaire completed by students after their general practice placement incorporating the System Usability Scale questionnaire.
Results: There was a 57% response rate. Ninety-five per cent of students agreed that the online package was a useful learning tool and ranked virtual patients third out of six learning modalities. Questions and answers and the use of images and videos were all rated highly by students as useful learning methods. The package was perceived to have a high level of usability among respondents.
Conclusion: Feedback from students suggest that this implementation of virtual patients, set in primary care, is user friendly and rated as a valuable adjunct to their learning. The cost of production of such learning resources demands close attention to design.
Resumo:
Quand le E-learning a émergé il ya 20 ans, cela consistait simplement en un texte affiché sur un écran d'ordinateur, comme un livre. Avec les changements et les progrès dans la technologie, le E-learning a parcouru un long chemin, maintenant offrant un matériel éducatif personnalisé, interactif et riche en contenu. Aujourd'hui, le E-learning se transforme de nouveau. En effet, avec la prolifération des systèmes d'apprentissage électronique et des outils d'édition de contenu éducatif, ainsi que les normes établies, c’est devenu plus facile de partager et de réutiliser le contenu d'apprentissage. En outre, avec le passage à des méthodes d'enseignement centrées sur l'apprenant, en plus de l'effet des techniques et technologies Web2.0, les apprenants ne sont plus seulement les récipiendaires du contenu d'apprentissage, mais peuvent jouer un rôle plus actif dans l'enrichissement de ce contenu. Par ailleurs, avec la quantité d'informations que les systèmes E-learning peuvent accumuler sur les apprenants, et l'impact que cela peut avoir sur leur vie privée, des préoccupations sont soulevées afin de protéger la vie privée des apprenants. Au meilleur de nos connaissances, il n'existe pas de solutions existantes qui prennent en charge les différents problèmes soulevés par ces changements. Dans ce travail, nous abordons ces questions en présentant Cadmus, SHAREK, et le E-learning préservant la vie privée. Plus précisément, Cadmus est une plateforme web, conforme au standard IMS QTI, offrant un cadre et des outils adéquats pour permettre à des tuteurs de créer et partager des questions de tests et des examens. Plus précisément, Cadmus fournit des modules telles que EQRS (Exam Question Recommender System) pour aider les tuteurs à localiser des questions appropriées pour leur examens, ICE (Identification of Conflits in Exams) pour aider à résoudre les conflits entre les questions contenu dans un même examen, et le Topic Tree, conçu pour aider les tuteurs à mieux organiser leurs questions d'examen et à assurer facilement la couverture des différent sujets contenus dans les examens. D'autre part, SHAREK (Sharing REsources and Knowledge) fournit un cadre pour pouvoir profiter du meilleur des deux mondes : la solidité des systèmes E-learning et la flexibilité de PLE (Personal Learning Environment) tout en permettant aux apprenants d'enrichir le contenu d'apprentissage, et les aider à localiser nouvelles ressources d'apprentissage. Plus précisément, SHAREK combine un système recommandation multicritères, ainsi que des techniques et des technologies Web2.0, tels que le RSS et le web social, pour promouvoir de nouvelles ressources d'apprentissage et aider les apprenants à localiser du contenu adapté. Finalement, afin de répondre aux divers besoins de la vie privée dans le E-learning, nous proposons un cadre avec quatre niveaux de vie privée, ainsi que quatre niveaux de traçabilité. De plus, nous présentons ACES (Anonymous Credentials for E-learning Systems), un ensemble de protocoles, basés sur des techniques cryptographiques bien établies, afin d'aider les apprenants à atteindre leur niveau de vie privée désiré.
Resumo:
Topics in education are changing with an ever faster pace. E-Learning resources tend to be more and more decentralised. Users need increasingly to be able to use the resources of the web. For this, they should have tools for finding and organizing information in a decentral way. In this, paper, we show how an ontology-based tool suite allows to make the most of the resources available on the web.
Resumo:
With the rapid advancement of the webtechnology, more and more educationalresources, including software applications forteaching/learning methods, are available acrossthe web, which enables learners to access thelearning materials and use various ways oflearning at any time and any place. Moreover,various web-based teaching/learning approacheshave been developed during the last decade toenhance the capability of both educators andlearners. Particularly, researchers from bothcomputer science and education are workingtogether, collaboratively focusing ondevelopment of pedagogically enablingtechnologies which are believed to improve theinfrastructure of education systems andprocesses, including curriculum developmentmodels, teaching/learning methods, managementof educational resources, systematic organizationof communication and dissemination ofknowledge and skills required by and adapted tousers. Despite of its fast development, however,there are still great gaps between learningintentions, organization of supporting resources,management of educational structures,knowledge points to be learned and interknowledgepoint relationships such as prerequisites,assessment of learning outcomes, andtechnical and pedagogic approaches. Moreconcretely, the issues have been widelyaddressed in literature include a) availability andusefulness of resources, b) smooth integration ofvarious resources and their presentation, c)learners’ requirements and supposed learningoutcomes, d) automation of learning process interms of its schedule and interaction, and e)customization of the resources and agilemanagement of the learning services for deliveryas well as necessary human interferences.Considering these problems and bearing in mindthe advanced web technology of which weshould make full use, in this report we willaddress the following two aspects of systematicarchitecture of learning/teaching systems: 1)learning objects – a semantic description andorganization of learning resources using the webservice models and methods, and 2) learningservices discovery and learning goals match foreducational coordination and learning serviceplanning.
Resumo:
Nowadays, the popularity of the Web encourages the development of Hypermedia Systems dedicated to e-learning. Nevertheless, most of the available Web teaching systems apply the traditional paper-based learning resources presented as HTML pages making no use of the new capabilities provided by the Web. There is a challenge to develop educative systems that adapt the educative content to the style of learning, context and background of each student. Another research issue is the capacity to interoperate on the Web reusing learning objects. This work presents an approach to address these two issues by using the technologies of the Semantic Web. The approach presented here models the knowledge of the educative content and the learner’s profile with ontologies whose vocabularies are a refinement of those defined on standards situated on the Web as reference points to provide semantics. Ontologies enable the representation of metadata concerning simple learning objects and the rules that define the way that they can feasibly be assembled to configure more complex ones. These complex learning objects could be created dynamically according to the learners’ profile by intelligent agents that use the ontologies as the source of their beliefs. Interoperability issues were addressed by using an application profile of the IEEE LOM- Learning Object Metadata standard.
Resumo:
The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.
Resumo:
Teaching is a dynamic activity. It can be very effective, if its impact is constantly monitored and adjusted to the demands of changing social contexts and needs of learners. This implies that teachers need to be aware about teaching and learning processes. Moreover, they should constantly question their didactical methods and the learning resources, which they provide to their students. They should reflect if their actions are suitable, and they should regulate their teaching, e.g., by updating learning materials based on new knowledge about learners, or by motivating learners to engage in further learning activities. In the last years, a rising interest in ‘learning analytics’ is observable. This interest is motivated by the availability of massive amounts of educational data. Also, the continuously increasing processing power, and a strong motivation for discovering new information from these pools of educational data, is pushing further developments within the learning analytics research field. Learning analytics could be a method for reflective teaching practice that enables and guides teachers to investigate and evaluate their work in future learning scenarios. However, this potentially positive impact has not yet been sufficiently verified by learning analytics research. Another method that pursues these goals is ‘action research’. Learning analytics promises to initiate action research processes because it facilitates awareness, reflection and regulation of teaching activities analogous to action research. Therefore, this thesis joins both concepts, in order to improve the design of learning analytics tools. Central research question of this thesis are: What are the dimensions of learning analytics in relation to action research, which need to be considered when designing a learning analytics tool? How does a learning analytics dashboard impact the teachers of technology-enhanced university lectures regarding ‘awareness’, ‘reflection’ and ‘action’? Does it initiate action research? Which are central requirements for a learning analytics tool, which pursues such effects? This project followed design-based research principles, in order to answer these research questions. The main contributions are: a theoretical reference model that connects action research and learning analytics, the conceptualization and implementation of a learning analytics tool, a requirements catalogue for useful and usable learning analytics design based on evaluations, a tested procedure for impact analysis, and guidelines for the introduction of learning analytics into higher education.
Resumo:
Die E-Learning-Plattform VBA@HfTL unterstützt das Erlernen von grundlegenden Programmierkonzepten mithilfe der Programmiersprache Visual Basic for Applications (VBA). Diese Plattform wurde von Studierenden für Studierende der Fachrichtung Wirtschaftsinformatik entwickelt, so dass ein Student2Student (S2S)-Ansatz umgesetzt wurde. Der Beitrag führt die konzeptionellen Grundlagen dieses Ansatzes ein und erläutert die organisatorischen sowie technischen Rahmenbedingungen des Entwicklungsprojekts als Forschungsfallstudie. Das Projektergebnis zeigt, dass Studierende selbstorganisiert E-Learning-Ressourcen entwickeln und sich dabei interdisziplinäre Fachinhalte der Wirtschaftsinformatik aneignen können. Die resultierende E-Learning-Plattform liefert aufgrund der hohen Resonanz nicht nur einen wertvollen Beitrag zur Unterstützung von Lernprozessen in der Aus- und Weiterbildung, sondern bietet der Hochschule auch eine Möglichkeit zur Profilierung des Bildungsangebots im Rahmen der Öffentlichkeitsarbeit.
Resumo:
Las Tecnologías de la Información y de las Comunicaciones, ofrecen una buena oportunidad para el desarrollo de comunidades virtuales de aprendizaje, especialmente en el caso de las titulaciones conjuntas entre organizaciones. Estas comunidades permiten a las organizaciones aprovechar mejor las oportunidades de aprendizaje que brindan las tecnologías de Internet, aportando mejores contenidos y experiencias de aprendizaje (Recursos de aprendizaje) tanto para los profesores como para los alumnos. Sin embargo, actualmente no existe una tecnología clara con la que poder federar plataformas de gestión e impartición de titulaciones virtuales (LMS), con la que dar un adecuado soporte a las titulaciones conjuntas. En este trabajo, se presenta una metodología y una arquitectura de federación de plataformas LMS para poder gestionar titulaciones conjuntas en ambiente de e-learning. Actualmente, existe escaso conocimiento acerca de los problemas que están imposibilitando la utilización de estos escenarios. Por ello, este trabajo se presenta como una solución para los miembros de la comunidad (directores, docentes, investigadores y estudiantes), ofreciendo un marco conceptual, que ayuda a entender estos escenarios e identifica los requisitos de diseño que son útiles para generar servicios de aprendizaje accesibles a los miembros de la comunidad (Grid de recursos de aprendizaje) y para integrar los LMS en una nube de titulaciones conjuntas en ambientes de e-learning. Así mismo, en el presente documento se presentan varias experiencias, en las que se han implementado comunidades virtuales de aprendizaje en la ciudad de Cartagena de Indias (Colombia), que han servido para inspirar y validar la solución propuesta en este trabajo. ABSTRACT Information and communication technologies offer a great opportunity for the development of virtual learning communities, like as joint degrees between Organizations. Virtual Learning Communities allow organizations to be more cooperative during training activities via the Internet, with the provision of their learning expertise (learning resource). Internet enables multiple organizations to share their learning expertise with others. In these cooperative knowledge spaces, each organization contributes with their partners providing learning resources that they offer to students and teachers. However, currently there is no clear technology with which to federate Learning Management Systems (LMS) to give adequate support to joint degrees. In this work, we present a description of the problems that would face the generation of the Joint degrees in e-learning environments. Currently little is known about the problems that prevent the formation of virtual learning communities generated from the experience contributed by multiple organizations, so, this work is important for community members (Directors, Teachers, Researchers and practitioners) because it offers a conceptual framework that helps understand these scenarios and can provide useful design requirements when generating learning services for the community (Grid of Learning Resources) and to integrate the LMS in a cloud of joint degrees in e-learning environments. We also propose various experiences in which virtual learning communities have been integrated in Cartagena de Indias (Colombia) which have served to inspire and validate the solution proposed in this paper.
Resumo:
Low resources in many African locations do not allow many African scientists and physicians to access the latest advances in technology. This deficiency hinders the daily life of African professionals that often cannot afford, for instance, the cost of internet fees or software licenses. The AFRICA BUILD project, funded by the European Commission and formed by four European and four African institutions, intends to provide advanced computational tools to African institutions in order to solve current technological limitations. In the context of AFRICA BUILD we have carried out, a series of experiments to test the feasibility of using Cloud Computing technologies in two different locations in Africa: Egypt and Burundi. The project aims to create a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa.