996 resultados para Dynamic geometry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Educação para a Ciência - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents some outcomes from research based on classroom experiences. The main themes are the use of mirrors, kaleidoscopes, dynamic geometry software, and manipulative material considering their possibilities for the teaching and learning of Euclidean and non-Euclidean geometries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study concerns teachers’ use of digital technologies in student assessment, and how the learning that is developed through the use of technology in mathematics can be evaluated. Nowadays math teachers use digital technologies in their teaching, but not in student assessment. The activities carried out with technology are seen as ‘extra-curricular’ (by both teachers and students), thus students do not learn what they can do in mathematics with digital technologies. I was interested in knowing the reasons teachers do not use digital technology to assess students’ competencies, and what they would need to be able to design innovative and appropriate tasks to assess students’ learning through digital technology. This dissertation is built on two main components: teachers and task design. I analyze teachers’ practices involving digital technologies with Ruthven’s Structuring Features of Classroom Practice, and what relation these practices have to the types of assessment they use. I study the kinds of assessment tasks teachers design with a DGE (Dynamic Geometry Environment), using Laborde’s categorization of DGE tasks. I consider the competencies teachers aim to assess with these tasks, and how their goals relate to the learning outcomes of the curriculum. This study also develops new directions in finding how to design suitable tasks for student mathematical assessment in a DGE, and it is driven by the desire to know what kinds of questions teachers might be more interested in using. I investigate the kinds of technology-based assessment tasks teachers value, and the type of feedback they give to students. Finally, I point out that the curriculum should include a range of mathematical and technological competencies that involve the use of digital technologies in mathematics, and I evaluate the possibility to take advantage of technology feedback to allow students to continue learning while they are taking a test.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Джурджица Такачи - В доклада се разглеждат дидактически подходи за решаване на задачи, упражнения и доказване на теореми с използване на динамичен софтуер, по-специално – с вече широко разпространената система GeoGebra. Въз основа на концепция-та на Пойа се анализира използването на GeoGebra като когнитивно средство за решаване на задачи и за обсъждане на техни възможни обобщения.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação propõe sete atividades acerca do estudo da circunferência para alunos do Ensino Médio. A maioria das atividades propostas utilizam o software gratuito de geometria dinâmica GeoGebra como ferramenta de aprendizagem. Programa com diversas vantagens. Além da concepção da geometria dinâmica, a associação entre Geometria e Álgebra, relação enfatizada até no seu nome. As atividades sugeridas abordam os seguintes conteúdos: equações da circunferência (reduzida e geral), análise da equação completa do 2o grau a duas variáveis, método de completar quadrados para reestabelecimento do centro e medida do raio da circunferência, posição relativa entre ponto e circunferência, reta e circunferência e entre duas circunferências. No presente trabalho consta ainda uma análise de alguns livros didáticos para ciência do que está sendo oportunizado ao professor como subsídio para suas aulas. Associamos esta análise também com a argumentação de que o produto deste trabalho é inovador. Mostraremos também a análise das atividades que embasaram a proposta desse trabalho quando aplicadas nas turmas de 3o ano do Instituto Federal do Rio Grande do Sul - Campus Rio Grande, assim como os resultados de uma pesquisa feita sobre os conhecimentos prévios dos alunos sobre geometria do Ensino Fundamental, especificamente relacionados ao círculo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study highlights the importance of cognition-affect interaction pathways in the construction of mathematical knowledge. Scientific output demands further research on the conceptual structure underlying such interaction aimed at coping with the high complexity of its interpretation. The paper discusses the effectiveness of using a dynamic model such as that outlined in the Mathematical Working Spaces (MWS) framework, in order to describe the interplay between cognition and affect in the transitions from instrumental to discursive geneses in geometrical reasoning. The results based on empirical data from a teaching experiment at a middle school show that the use of dynamic geometry software favours students’ attitudinal and volitional dimensions and helps them to maintain productive affective pathways, affording greater intellectual independence in mathematical work and interaction with the context that impact learning opportunities in geometric proofs. The reflective and heuristic dimensions of teacher mediation in students’ learning is crucial in the transition from instrumental to discursive genesis and working stability in the Instrumental-Discursive plane of MWS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.