978 resultados para Duffin Kemmer Petiau equation
Resumo:
Here we study the behaviour of the spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KO field, a result that breaks the usual equivalence between the DKP and the KG fields.Next we analyse the case of the Teleparallel Equivalent of General Relativity (Weitzenbock manifold), showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.
Resumo:
We investigate the conformal invariance of massless Duffin-Kemmer-Petiau theory coupled to Riemannian spacetimes. We show that, as usual, in the minimal coupling procedure only the spin I sector of the theory - which corresponds to the electromagnetic field - is conformally invariant. We also show that the conformal invariance of the spin 0 sector can be naturally achieved by introducing a compensating term in the Lagrangian. Such a procedure - besides not modifying the spin I sector - leads to the well-known conformal coupling between the scalar curvature and the massless Klein-Gordon-Fock field. Going beyond the Riemannian spacetimes, we briefly discuss the effects of a nonvanishing torsion in the scalar case.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It is shown that the paper Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation for massive spinless bosons in the presence of a nonminimal vector smooth step potential is revised. The problem is mapped into a Sturm-Lionville equation. The reflection and transmission coefficients are obtained and discussed in detail. Furthermore; we show that Klein's paradox does not show its face in this sort of interaction.
Resumo:
We study the massless Duffin-Kemmer-Petiau (DKP) equation in Riemannian space-times, particularly the massless spin 1 sector which reproduces the free Maxwell's equations.