982 resultados para Drug-excipient interaction
Resumo:
This paper demonstrates the application of thermal analysis in compatibility and stability studies between it ACE inhibitor (enalapril maleate) and excipients. The results have helped to elucidate the reason of a stability problem observed (luring the storage of enalapril maleate tablets. Incompatibility between enalapril maleate and colloidal silicon dioxide was detected. Besides, it was confirmed that the reaction between enalapril maleate and NaHCO3 increases the thermal stability of the drug. This Study Supports the importance of using thermoanalytical methods in the development of pharmaceuticals.
Resumo:
In this dissertation, the theoretical principles governing the molecular modeling were applied for electronic characterization of oligopeptide α3 and its variants (5Q, 7Q)-α3, as well as in the quantum description of the interaction of the aminoglycoside hygromycin B and the 30S subunit of bacterial ribosome. In the first study, the linear and neutral dipeptides which make up the mentioned oligopeptides were modeled and then optimized for a structure of lower potential energy and appropriate dihedral angles. In this case, three subsequent geometric optimization processes, based on classical Newtonian theory, the semi-empirical and density functional theory (DFT), explore the energy landscape of each dipeptide during the search of ideal minimum energy structures. Finally, great conformers were described about its electrostatic potential, ionization energy (amino acids), and frontier molecular orbitals and hopping term. From the hopping terms described in this study, it was possible in subsequent studies to characterize the charge transport propertie of these peptides models. It envisioned a new biosensor technology capable of diagnosing amyloid diseases, related to an accumulation of misshapen proteins, based on the conductivity displayed by proteins of the patient. In a second step of this dissertation, a study carried out by quantum molecular modeling of the interaction energy of an antibiotic ribosomal aminoglicosídico on your receiver. It is known that the hygromycin B (hygB) is an aminoglycoside antibiotic that affects ribosomal translocation by direct interaction with the small subunit of the bacterial ribosome (30S), specifically with nucleotides in helix 44 of the 16S ribosomal RNA (16S rRNA). Due to strong electrostatic character of this connection, it was proposed an energetic investigation of the binding mechanism of this complex using different values of dielectric constants (ε = 0, 4, 10, 20 and 40), which have been widely used to study the electrostatic properties of biomolecules. For this, increasing radii centered on the hygB centroid were measured from the 30S-hygB crystal structure (1HNZ.pdb), and only the individual interaction energy of each enclosed nucleotide was determined for quantum calculations using molecular fractionation with conjugate caps (MFCC) strategy. It was noticed that the dielectric constants underestimated the energies of individual interactions, allowing the convergence state is achieved quickly. But only for ε = 40, the total binding energy of drug-receptor interaction is stabilized at r = 18A, which provided an appropriate binding pocket because it encompassed the main residues that interact more strongly with the hygB - C1403, C1404, G1405, A1493, G1494, U1495, U1498 and C1496. Thus, the dielectric constant ≈ 40 is ideal for the treatment of systems with many electrical charges. By comparing the individual binding energies of 16S rRNA nucleotides with the experimental tests that determine the minimum inhibitory concentration (MIC) of hygB, it is believed that those residues with high binding values generated bacterial resistance to the drug when mutated. With the same reasoning, since those with low interaction energy do not influence effectively the affinity of the hygB in its binding site, there is no loss of effectiveness if they were replaced.
Resumo:
According to the global framework regarding new cases of tuberculosis, Brazil appears at the 18th place. Thus, the Ministry of Health has defined this disease as a priority in the governmental policies. As a consequence, studies concerning treatment and prevention have increased. Fixed-dose combination formulations (FDC) are recognized as beneficial and are recommended by WHO, but they present instability and loss on rifampicin bioavailability. The main purpose of this work was to carry out a pre-formulation study with the schedule 1 tuberculosis treatment drugs: rifampicin, isoniazid, pyrazinamide and ethambutol and pharmaceutical excipients (lactose, cellulose, magnesium stearate and talc), in order to develop an FDC product (150 mg of rifampicin + 75 mg of isoniazid + 400 mg of pyrazinamide + 250 mg of ethambutol). The studies consisted of the determination of particle size and distribution (Ferret s diameter) and shape through optical microscopy, as well as rheological and technological properties (bulk and tapped densities, Hausner Factor, Carr s Index, repose angle and flux rate) and interactions among drugs and drug excipient through thermal analysis (DSC, DTA, TG and your derivate). The results showed that, except isoniazid, the other drugs presented poor rheological properties, determined by the physical characteristics of the particles: small size and rod like particles shape for rifampicin; rectangular shape for pyrazinamide and ethambutol, beyond its low density. The 4 drug mixture also not presented flowability, particularly that one containing drug quantity indicated for the formulation of FDC products. In this mixture, isoniazid, that has the best flowability, was added in a lower concentration. The addition of microcrystalline cellulose, magnesium stearate and talc to the drug mixtures improved flowability properties. In DSC analysis probable interactions among drugs were found, supporting the hypothesis of ethambutol and pyrazinamide catalysis of the rifampicin-isoniazid reaction resulting in 3- formylrifamycin isonicotinyl hydrazone (HYD) as a degradation product. In the mixtures containing lactose Supertab® DSC curves evidenced incompatibility among drugs and excipient. In the DSC curves of mixtures containing cellulose MC101®, magnesium stearate and talc, no alterations were observed comparing to the drug profiles. The TG/DTG of the binary and ternary mixtures curves showed different thermogravimetrics profiles relating that observed to the drug isolated, with the thermal decomposition early supporting the evidences of incompatibilities showed in the DSC and DTA curves
Resumo:
Polymeric nanoparticles have received great attention as potential controlled drug delivery systems. Biodegradable polymers has been extensively used in the development of these drug carriers, and the polyesters such as polylactic acid, polyglycolic acid and their copolymers as poly-lactide-co- glycolide are the most used, considering its biocompatibility and biodegradability. Thermal analysis techniques have been used for pharmaceutical substances for more than 30 years and are routine methods for screening drug-excipient interactions. The aim of this work is to use thermal analysis to characterize PLGA nanoparticles containing a hydrophobic drug, praziquantel. The results show that the drug is in an amorphous state or in disordered crystalline phase of molecular dispersion in the PLGA polymeric matrix and that the microencapsulation process did not interfere with the chemical structure of the polymer, mantaining the structural drug integrity.
Resumo:
Polymers blends represent an important approach to obtain materials with modulated properties to reach different and desired properties in designing drug delivery systems in order to fulfill therapeutic needs. The aim of this work was to evaluate the influence of drug loading and polymer ratio on the physicochemical properties of microparticles of cross-linked high amylose starch-pectin blends loaded with diclofenac for further application in controlled drug delivery systems. Thermal analysis and X-ray diffractograms evidenced the occurrence of drug-polymer interactions and the former pointed also to an increase in thermal stability due to drug loading. The rheological properties demonstrated that drug loading resulted in formation of weaker gels while the increase of pectin ratio contributes to origin stronger structures. © 2012 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.
Resumo:
9-hydroxystearic acid (9-HSA) is an endogenous lipoperoxidation product and its administration to HT29, a colon adenocarcinoma cell line, induced a proliferative arrest in G0/G1 phase mediated by a direct activation of the p21WAF1 gene, bypassing p53. We have previously shown that 9-HSA controls cell growth and differentiation by inhibiting histone deacetylase 1 (HDAC1) activity, showing interesting features as a new anticancer drug. The interaction of 9-HSA with the catalytic site of the 3D model has been tested with a docking procedure: noticeably, when interacting with the site, the (R)-9-enantiomer is more stable than the (S) one. Thus, in this study, (R)- and (S)-9-HSA were synthesized and their biological activity tested in HT29 cells. At the concentration of 50 M (R)-9-HSA showed a stronger antiproliferative effect than the (S) isomer, as indicated by the growth arrest in G0/G1. The inhibitory effect of (S)-9-HSA on HDAC1, HDAC2 and HDAC3 activity was less effective than that of the (R)-9-HSA in vitro, and the inhibitory activity of both the (R)- and the (S)-9-HSA isomer, was higher on HDAC1 compared to HDAC2 and HDAC3, thus demonstrating the stereospecific and selective interaction of 9-HSA with HDAC1. In addition, histone hyperacetylation caused by 9-HSA treatment was examined by an innovative HPLC/ESI/MS method. Analysis on histones isolated from control and treated HT29 confirmed the higher potency of (R)-9-HSA compared to (S)-9-HSA, severely affecting H2A-2 and H4 acetylation. On the other side, it seemed of interest to determine whether the G0/G1 arrest of HT29 cell proliferation could be bypassed by the stimulation with the growth factor EGF. Our results showed that 9-HSA-treated cells were not only prevented from proliferating, but also showed a decreased [3H]thymidine incorporation after EGF stimulation. In this condition, HT29 cells expressed very low levels of cyclin D1, that didn’t colocalize with HDAC1. These results suggested that the cyclin D1/HDAC1 complex is required for proliferation. Furthermore, in the effort of understanding the possible mechanisms of this effect, we have analyzed the degree of internalization of the EGF/EGFR complex and its interactions with HDAC1. EGF/EGFR/HDAC1 complex quantitatively increases in 9-HSA-treated cells but not in serum starved cells after EGF stimulation. Our data suggested that 9-HSA interaction with the catalytic site of the HDAC1 disrupts the HDAC1/cyclin D1 complex and favors EGF/EGFR recruitment by HDAC1, thus enhancing 9-HSA antiproliferative effects. In conclusion 9-HSA is a promising HDAC inhibitor with high selectivity and specificity, capable of inducing cell cycle arrest and histone hyperacetylation, but also able to modulate HDAC1 protein interaction. All these aspects may contribute to the potency of this new antitumor agent.
Resumo:
Objective To evaluate drug interaction software programs and determine their accuracy in identifying drug-drug interactions that may occur in intensive care units. Setting The study was developed in Brazil. Method Drug interaction software programs were identified through a bibliographic search in PUBMED and in LILACS (database related to the health sciences published in Latin American and Caribbean countries). The programs` sensitivity, specificity, and positive and negative predictive values were determined to assess their accuracy in detecting drug-drug interactions. The accuracy of the software programs identified was determined using 100 clinically important interactions and 100 clinically unimportant ones. Stockley`s Drug Interactions 8th edition was employed as the gold standard in the identification of drug-drug interaction. Main outcome Sensitivity, specificity, positive and negative predictive values. Results The programs studied were: Drug Interaction Checker (DIC), Drug-Reax (DR), and Lexi-Interact (LI). DR displayed the highest sensitivity (0.88) and DIC showed the lowest (0.69). A close similarity was observed among the programs regarding specificity (0.88-0.92) and positive predictive values (0.88-0.89). The DIC had the lowest negative predictive value (0.75) and DR the highest (0.91). Conclusion The DR and LI programs displayed appropriate sensitivity and specificity for identifying drug-drug interactions of interest in intensive care units. Drug interaction software programs help pharmacists and health care teams in the prevention and recognition of drug-drug interactions and optimize safety and quality of care delivered in intensive care units.
Resumo:
Aims Previous studies suggest that estimated creatinine clearance, the conventional measure of renal function, does not adequately reflect charges in renal drug handling in some patients, including the immunosuppressed. The aim of this study was to develop and validate a cocktail of markers. to be given in a single administration, capable of detecting alterations in the renal elimination pathways of glomerular filtration, tubular secretion and tubular reabsorption. Methods Healthy male subjects (n = 12) received intravenously infused 2500 mg sinistrin (glomerular filtration) and 440 mg p-aminohippuric acid (PAH; anion secretion), and orally administered 100 mg fluconazole (reabsorption) and 15 mg rac-pindolol (cation secretion). The potential interaction between these markers was investigated in a pharmacokinetic study where markers (M) or fluconazole (F) were administered alone or together (M + F). Validated analytical methods were used to measure plasma and urine concentrations in order to quantify the renal handling of each marker. Plasma protein binding of fluconazole was measured by ultrafiltration. All subjects had an estimated creatinine clearance within the normal range. The renal clearance of each marker (Mean +/- s.d.) was calculated as the ratio of the amount excreted in urine and thearea-under-the-concentration-time curve. Statistical comparisons were made using a paired t-test and 95% confidence intervals were reported. Results The renal clearances of sinistrin (M: 119 +/- 31 ml min(-1); M + F: 130 +/- 40 ml min(-1); P = 0.32), PAH (M: 469 +/- 145 ml min(-1); M + F: 467 +/- 146 ml min(-1); P = 0.95), R-pindolol (M: 204 +/- 41 ml min(-1); M + F: 190 +/- 41 ml min(-1); P = 0.39; n = 11), S-pindolol (M: 225 +/- 55 ml min(-1); M + F: 209 +/- 60 ml min(-1); P = 0.27; n = 11) and fluconazole (F: 14.9 +/-3.8 ml min(-1); M + F: 13.6 +/- 3.4 ml min(-1); P = 0.16) were similar when the markers or fluconazole were administered alone (M or F) or as a cocktail (M + F). Conclusions This study found no interaction between markers and fluconazole in healthy male subjects, suggesting that a single administration of this cocktail of markers of different renal processes call be used to simultaneously investigate pathways of renal drug elimination.
Resumo:
OBJECTIVE: To assess the frequency of combination of antidepressants with other drugs and risk of drug interactions in the setting public hospital units in Brazil. METHODS: Prescriptions of all patients admitted to a public hospital from November 1996 to February 1997 were surveyed from the hospital's data processing center in São Paulo, Brazil. A manual search of case notes of all patients admitted to the psychiatric unit from January 1993 to December 1995 and all patients registered in the affective disorders outpatient clinic in December 1996 was carried out. Patients taking any antidepressant were identified and concomitant use of drugs was checked. By means of a software program (Micromedex®) drug interactions were identified. RESULTS: Out of 6,844 patients admitted to the hospital, 63 (0.9%) used antidepressants and 16 (25.3%) were at risk of drug interaction. Out of 311 patients in the psychiatric unit, 63 (20.2%) used antidepressants and 13 of them (20.6%) were at risk. Out of 87 patients in the affective disorders outpatient clinic, 43 (49.4%) took antidepressants and 7 (16.2%) were at risk. In general, the use of antidepressants was recorded in 169 patients and 36 (21.3%) were at risk of drug interactions. Twenty different forms of combinations at risk of drug interactions were identified: four were classified as mild, 15 moderate and one severe interaction. CONCLUSION: In the hospital general units the number of drug interactions per patient was higher than in the psychiatric unit; and prescription for depression was lower than expected.
Resumo:
Two published case reports showed that addition of risperidone (1 and 2 mg/d) to a clozapine treatment resulted in a strong increase of clozapine plasma levels. As clozapine is metabolized by cytochrome P450 isozymes, a study was initiated to assess the in vivo interaction potential of risperidone on various cytochrome P450 isozymes. Eight patients were phenotyped with dextromethorphan (CYP2D6), mephenytoin (CYP2C19), and caffeine (CYP1A2) before and after the introduction of risperidone. Before risperidone, all eight patients were phenotyped as being extensive metabolizers of CYP2D6 and CYP2C19. Risperidone at dosages between 2 and 6 mg/d does not appear to significantly inhibit CYP1A2 and CYP2C19 in vivo (median plasma paraxanthine/caffeine ratios before and after risperidone: 0.65, 0.69; p = 0.89; median urinary (S)/(R) mephenytoin ratios before and after risperidone:0.11, 0.12; p = 0.75). Although dextromethorphan metabolic ratio is significantly increased by risperidone (median urinary dextromethorphan/dextrorphan ratios before and after risperidone: 0.010, 0.018; p = 0.042), risperidone can be considered a weak in vivo CYP2D6 inhibitor, as this increase is modest and none of the eight patients was changed from an extensive to a poor metabolizer. The reported increase of clozapine concentrations by risperidone can therefore not be explained by an inhibition of CYP1A2, CYP2D6, CYP2C19 or by any combination of the three.
Resumo:
Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid - BEH - Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006μg/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20μg/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48h at room temperature and at +4°C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real-life conditions of the microbiologically active compounds colistin A and B offers a highly efficient tool for routine therapeutic drug monitoring aimed at individualizing drug dosing against life-threatening infections.
Resumo:
Flow cytometric analysis is a useful and widely employed tool to identify immunological alterations caused by different microorganisms, including Mycobacterium tuberculosis. However, this tool can be used for several others analysis. We will discuss some applications for flow cytometry to the study of M. tuberculosis, mainly on cell surface antigens, mycobacterial secreted proteins, their interaction with the immune system using inflammatory cells recovered from peripheral blood, alveolar and pleura spaces and the influence of M. tuberculosis on apoptosis, and finally the rapid determination of drug susceptibility. All of these examples highlight the usefulness of flow cytometry in the study of M. tuber-culosis infection.