72 resultados para Dolerite-porphyries
Resumo:
As porfirias são um grupo de oito doenças metabólicas raras, em resultado de uma deficiência enzimática em cada uma das oito enzimas envolvidas na biossíntese do grupo heme. São doenças maioritariamente hereditárias, mas podem também ser adquiridas aquando da exposição a certos fatores ambientais e/ou patológicos. Estes fatores externos, denominados de porfirinogénicos também têm um papel preponderante no diagnóstico das porfirias, uma vez que mimetizam os sintomas clínicos de um ataque agudo de porfiria, contribuindo para subestimar esta doença, levando a um atraso no diagnóstico e diminuído o sucesso do prognóstico. Os ataques agudos de porfiria, nomeadamente na porfiria aguda intermitente, porfiria variegata, coproporfiria hereditária, e deficiência da desidratase do ácido delta-aminolevulínico, apesar de serem doenças multissistémicas, têm em comum como apresentação clínica, a dor abdominal aguda. A pesquisa de porfobilinogénio (PBG) na urina, através da realização do teste de Hoesch, é uma forma rápida e fácil de excluir a suspeita clínica de porfiria. Pretendemos com este trabalho, alertar para a necessidade de um diagnóstico laboratorial atempado, que pela sua simplicidade poderá descartar ou confirmar se a dor abdominal aguda, tão frequente nas urgências hospitalares, será ou não uma manifestação clínica de um ataque agudo de porfiria. Este estudo contribuirá não só para aumentar o nosso conhecimento acerca destas doenças, como também permitirá uma melhor compreensão dos mecanismos de patogenicidade das porfirias, o qual ainda permanece pouco conhecido.
Resumo:
Magma flow in dykes is still not well understood; some reported magnetic fabrics are contradictory and the potential effects of exsolution and metasomatism processes on the magnetic properties are issues open to debate. Therefore, a long dyke made of segments with different thickness, which record distinct degrees of metasomatism, the Messejana-Plasencia dyke (MPD), was studied. Oriented dolerite samples were collected along several cross-sections and characterized by means of microscopy and magnetic analyses. The results obtained show that the effects of metasomatism on rock mineralogy are important, and that the metasomatic processes can greatly influence anisotropy degree and mean susceptibility only when rocks are strongly affected by metasomatism. Petrography, scanning electron microscopy (SEM) and bulk magnetic analyses show a high-temperature oxidation-exsolution event, experienced by the very early Ti-spinels, during the early stages of magma cooling, which was mostly observed in central domains of the thick dyke segments. Exsolution reduced the grain size of the magnetic carrier (multidomain to single domain transformation), thus producing composite fabrics involving inverse fabrics. These are likely responsible for a significant number of the 'abnormal' fabrics, which make the interpretation of magma flow much more complex. By choosing to use only the 'normal' fabric for magma flow determination, we have reduced by 50 per cent the number of relevant sites. In these sites, the imbrication angle of the magnetic foliation relative to dyke wall strongly suggests flow with end-members indicating vertical-dominated flow (seven sites) and horizontal-dominated flow (three sites).
Resumo:
A detailed analysis of fabrics of the chilled margin of a thick dolerite dyke (Foum Zguid dyke, Southern Morocco) was performed in order to better understand the development of sub-fabrics during dyke emplacement and cooling. AMS data were complemented with measurements of paramagnetic and ferrimagnetic fabrics (measured with high field torque magnetometer), neutron texture and microstructural analyses. The ferrimagnetic and AMS fabrics are similar, indicating that the ferrimagnetic minerals dominate the AMS signal. The paramagnetic fabric is different from the previous ones. Based on the crystallization timing of the different mineralogical phases, the paramagnetic fabric appears related to the upward flow, while the ferrimagnetic fabric rather reflects the late-stage of dyke emplacement and cooling stresses. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
RÉSUMÉ : Chez l'homme, le manque de sélectivité des agents thérapeutiques représente souvent une limitation pour le traitement des maladies. Le ciblage de ces agents pour un tissu défini pourrait augmenter leur sélectivité et ainsi diminuer les effets secondaires en comparaison d'agents qui s'accumuleraient dans tout le corps. Cela pourrait aussi améliorer l'efficacité des traitements en permettant d'avoir une concentration localisée plus importante. Le ciblage d'agents thérapeutiques est un champ de recherche très actif. Les stratégies sont généralement basées sur les différences entre cellules normales et malades. Ces différences peuvent porter soit sur l'expression des molécules à leurs surfaces comme des récepteurs ou des transporteurs, soit sur les activités enzymatiques exprimées. Le traitement thérapeutique choisi ici est la thérapie photodynamique et est déjà utilisé pour le traitement de certains cancers. Cette thérapie repose sur l'utilisation de molécules qui réagissent à la lumière, les photosensibilisants. Elles absorbent l'énergie lumineuse et réagissent avec l'oxygène pour former des radicaux toxiques pour les cellules. Les photosensibilisants utilisés ici sont de deux natures : (i) soit ils sont tétrapyroliques (comme les porphyrines et chlorines), c'est à dire qu'ils sont directement activables par la lumière ; (ii) soit ce sont des prodrogues de photosensibilisants comme l'acide 5aminolévulinique (ALA) qui est transformé dans la cellule en protoporphyrine IX photosensibilisante. Dans le but d'augmenter la sélectivité des photosensibilisants, nous avons utilisé deux stratégies différentes : (i) le photosensibilisant est modifié par le greffage d'un agent de ciblage ; (ii) le photosensibilisant est incorporé dans des structures moléculaires de quelques centaines de nanomètres. Les sucres et l'acide folique sont des agents de ciblage largement établis et ont été utilisés ici car leurs récepteurs sont surexprimés à la surface de nombreuses cellules malades. Ainsi, des dérivés sucres ou acide folique de l'ALA ont été synthétisés et évalués in vitro sur de nombreuses lignées cellulaires cancéreuses. La stratégie utilisant l'acide folique est apparue incompatible avec l'utilisation de l'ALA puisque aucune photosensibilité n'a été induite par le composé. La stratégie utilisant les sucres a, par ailleurs, provoquée de bonnes photosensibilités mais pas d'augmentation de sélectivité. En parallèle, la combinaison entre les propriétés anticancéreuses des complexes métalliques au ruthénium avec les propriétés photosensibilisantes des porphyrines, a été évaluée. En effet, les thérapies combinées ont émergé il y a une dizaine d'années et représentent aujourd'hui de bonnes alternatives aux monothérapies classiques. Des ruthenium(I1)-arènes complexés avec la tetrapyridylporphyrine ont ainsi présenté de bonnes cytotoxicités et de bonnes phototoxicités pour des cellules de mélanomes. Des porphyrines ont aussi été compléxées avec des noyaux de diruthénium et ce type de dérivé a présenté de bonnes phototoxicités et une bonne sélectivité pour les cellules cancéreuses de l'appareil reproducteur féminin. L'incorporation de photosensibilisants tétrapyroliques a finalement été effectuée en utilisant des nanoparticules (NP) biocompatibles composées de chitosan et de hyaluronate. L'effet de ces NP a été évalué pour le traitement de la polyarthrite rhumatoïde (PR). Les NP ont d'abord été testées in vitro avec des macrophages de souris et les résultats ont mis en évidence de bonnes sélectivités et photosensibilités pour ces cellules. In vivo chez un modèle marin de la PR, l'utilisation de ces NP a révélé un plus grand temps de résidence des NP dans le genou de la souris en comparaison du temps obtenu avec le photosensibilisant seul. Le traitement par PDT a aussi démontré une bonne efficacité par ailleurs égale à celle obtenue avec les corticoïdes utilisés en clinique. Pour finir, les NP ont aussi démontré une bonne efficacité sur les myelomonocytes phagocytaires humains et sur les cellules contenues dans le liquide synovial de patients présentant une PR. Tous ces résultats suggèrent que les deux stratégies de ciblage peuvent être efficaces pour les agents thérapeutiques. Afm d'obtenir de bons résultats, il est toutefois nécessaire de réaliser une analyse minutieuse de la cible et du mode d'action de l'agent thérapeutique. Concernant les perspectives, la combinaison des deux stratégies c'est à dire incorporer des agents thérapeutiques dans des nanostructures porteuses d'agents de ciblage, représente probablement une solution très prometteuse. SUMMARY : In humans, the lack of selectivity of drugs and their high effective concentrations often represent limitations for the treatment of diseases. Targeting the therapeutical agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body and could also improve treatment efûciency by allowing a localized high concentration of the agents. Targeting therapeutics to defined cells in human pathologies is a main challenge and a very active field of research. Strategies are generally based on the different behaviors and patterns of expression of diseased cells compared to normal cells such as receptors, proteases or trans-membrane carriers. The therapeutic treatment chosen here is the photodynamic therapy and is already used in the treatment of many cancers. This therapy relies on the administration of a photosensitizer (PS) which will under light, react with oxygen and induce formation of reactive oxygen species which are toxic for cells. The PSs used here are either tetrapyrolic (i. e. porphyries and chlorins) or prodrugs of PS (5-aminolevulinic acid precursor of the endogenous protoporphyrin Imo. In order to improve PS internalization and selectivity, we have used two different strategies: the modification of the PSs with diseased cell-targeting agents as well as their encapsulation into nanostructures. Sugars and folic acid are well established as targeting entities for diseased cells and were used here since their transporters are overexpressed on the surface of many cancer cells. Therefore sugar- and folic acid-derivatives of 5-aminolevulinic acid (ALA) were synthesized and evaluated in vitro in several cancer cell lines. The folic acid strategy appeared to be incompatible with ALA since no photosensitivity was induced while the strategy with sugars induced good photosensitivites but no increase of selectivity. Alternatively, the feasibility of combining the antineoplastic properties of ruthenium complexes with the porphyrin's photosensitizing properties, was evaluated since combined therapies have emerged as good alternatives to classical treatments. Tetrapyridylporphyrins complexed to ruthenium (I17 arenes presented good cytotoxicities and good phototoxicities toward melanoma cells. Porphyries were also complexed to diruthenium cores and this type of compound presented good phototoxicities and good selectivity for female reproductive cancer cells. The encapsulation of tetrapyrolic PSs was finally investigated using biocompatible nanogels composed of chitosan and hyaluronate. The behavior of these nanoparticles was evaluated for the treatment of rheumatoid arthritis (RA). They were first tested in vitro in mouse macrophages and results revealed good selectivities and phototoxicities toward these cells. In vivo in mice model of RA, the use of such nanoparticles instead of free PS showed longer time of residence in mice knees. Photodynamic protocols also demonstrated good efficiency of the treatment comparable to the corticoid injection used in the clinic. Finally our system was also efficient in human cells using phagocytic myelomonocytes or using cells of synovial fluids taken from patients with RA. Altogether, these results revealed that both strategies of modification or encapsulation of drugs can be successful in the targeting of diseased cells. However, a careful analysis of the target and of the mode of action of the drug, are needed in order to obtain good results. Looking ahead to the future, the combination of the two strategies (i.e. drugs loaded into nanostructures bearing the targeting agents) would represent probably the best solution.
Resumo:
Accreted terranes, comprising a wide variety of Late Jurassic and Early Cretaceous igneous and sedimentary rocks are an important feature of Cuban geology. Their characterization is helpful for understanding Caribbean paleogeography. The Guaniguanico terrane (western Cuba) is formed by upper Jurassic platform sediments intruded by microgranular dolerite dykes. The geochemical characteristics of the dolerite whole rock samples and their minerals (augitic clinopyroxene, labradorite and andesine) are consistent with a tholeiitic affinity. Major and trace element concentrations as well as Nd, Sr and Pb isotopes show that these rocks also have a continental affinity. Sample chemistry indicates that these lavas are similar to a low Ti-P2O5 (LTi) variety of continental flood basalts (CFB) similar to the dolerites of Ferrar (Tasmania). They derived from mixing of a lithospheric mantle Source and an asthenopheric component similar to E-MORB with minor markers of crustal contamination and sediment assimilation. However, the small quantity of Cuban magmatic rocks, similarly to Tasmania, Antarctica and Siberia differs from other volumetrically important CFB occurrences Such as Parana and Deccan. These dolerites are dated as 165-150 Ma and were emplaced during the separation of the Yucatan block from South America. They could in fact be part of the Yucatan-South America margin through which the intrusive system was emplaced and which was later accreted to the Cretaceous arc of central Cuba and to the Palaeogene arc of eastern Cuba. These samples could therefore reflect the pre-rift stage between North and South America and the opening of the gulf of Mexico.
Resumo:
The Paleozoic stratigraphic succession in the Catalonian Coastal Ranges spans the interval from Cambrian(?) to Carboniferous, with only one break, separating the pre-Carboniferous part of the sequence from the Carboniferous. The oldest rocks exposed form a sequence of schists, fine grained sandstones, gneisses (laminar pre-Hercynian intrusions), marbles, orto- and para-amphibolites and calcsilicate rocks. comparison with other localities iuggests an Early Cambrian age (or perhaps in part older). Upwards the sequence becomes more monotonous andconsists only of schists (or slates where themetamorphic grade is lower) and thin fine-grained sandstone layers (Cambrian-Ordovician). Still higher in the sequence, an altemation of greywackes and slates is found, with interlayered mud-supported conglomerates at its lower part and acid volcanic rocks which occur throughout the whole sequence. This part of the sequence has provided the oldest faunas known in the Catalonian Coastal Ranges, which indicate the Caradoc. Finally, in its uppermost part, the Ordovician sequence contains some thin limestone layers that contain Ashgill faunas. The Silurian, from Llandovery to Lower Ludlow, consists of black graptolitic shales with dolerite sills, whilst the upper Ludlow, Pridolian and Devonian consist of nodular limestones and marls withpelagic and hemipelagic faunas. The youngest Devonian faunas found correspond in general to the Emsian. The existence of a gap at this point of the sequence suggests the possibility that part of the Devonian could have been eroded. The Carboniferous is characterized by a thick culm sequence (Visean to Westphalian?), resting on thin chert and limestone layers (Tournaisian and Visean). A comparison with neighbouring areas shows a similarity regarding succession and facies with other Paleozoic massifs around the Western Mediterranean.
Resumo:
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. <p>The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.</p> <p>Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. (c) 2008 Elsevier Ltd. All rights reserved.</p>
Resumo:
New structural, geochronological and paleomagnetic data were obtained on dolerite dikes of the Nola region (Central African Republic) at the northern border of the Congo craton. In this region metavolcanic, successions were thrust southward onto the craton during the Panafrican orogenic events. Our structural data reveal at least two structural klippes south of the present-day limits of the Panafrican nappe suggesting that it has once covered the whole Nola region, promoting the pervasive hydrothermal green-schist metamorphism observed in the underlying cratonic basement and also in the intrusive dolerite dikes. Paleomagnetic measurements revealed a stable dual-polarity low-inclination magnetization component in nine dikes (47 samples), carried by pyrrhotite and magnetite. This component corresponds to a paleopole at 304.8 degrees E and 61.8 degrees S (dp = 5.4, dm = 10.7) graded at 2 = 6. Both metamorphism and magnetic resetting were dated by the Ar-40/Ar-39 method on amphibole grains separated from the dikes at 571 +/- 6 Ma. The Nola pole is the first well-dated paleomagnetic pole for the Congo craton between 580 and 550 Ma. It marks a sudden change in direction of the Congo craton apparent polar wander path at the waning stages of the Panafrican orogenic events. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Amazonian craton in the Sao Felix do Xingu city, southeast region of the Para state, north of Brazil, hosts exceptionally well-preserved Paleoproterozoic bimodal magmatic units grouped in the Sobreiro and Santa Rosa formations. These formations are correlated to the Uatuma magmatic event, which is largely distributed in the Amazonian craton occupying more than 1,500,000 km(2). Geological mapping and petrographical observations reveal distinct spectra of volcanic facies in both formations. The basal calc-alkaline Sobreiro Formation is composed mainly of andesitic and dacitic lava flows and associated volcaniclastic facies of autoclastic origin, with subordinate pyroclastic flow deposits. This formation shows inferred eruption style that is similar to those in Flood Basalt Provinces, with rare scutulum-type lava shields. The upper A-type Santa Rosa Formation was generated by multicyclic explosive and effusive episodes predominantly associated with large fissures and is materialized by voluminous ignimbrites with subordinated ash-fall tuff, crystal tuff, lapilli-tuff, co-ignimbritic breccias, rhyolitic dikes and domes, and associated granitic porphyries and equigranular granitic intrusions. Ignimbrite and rhyolite dikes reveal conspicuous vertical flow pattern pointing to a fissure-controlled eruption, similar to Sierra Madre Occidental ignimbrite province. The proposed evolutionary model for the Sao Felix do Xingu units differs from those of other occurrences related to the Uatuma magmatic event in the Amazonian craton, characterized by predominance of A-type volcanism and contemporaneous granites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajó Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajós Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajó Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupá Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajó Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds, and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the transpressive and transtensive structures, such as the blockage of major rivers, which evolved to river-lakes, transgression of the sea over a large area in the Marajó region, and uplift of long and narrow blocks that are oblique to the trend of the main channel. The younger set (Pliocene-Holocene) refers to two triple-arm systems of rift/rift/strike-slip and strike-slip/strike-slip/rift types, and two large transtensive segments, which have controlled the orientation of the modern drainage patterns. © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
As formações Sobreiro e Santa Rosa são resultado de intensas atividades vulcânicas paleoproterozoicas na região de São Félix do Xingu (PA), SE do Cráton Amazônico. A Formação Sobreiro é composta por rochas de fácies de fluxo de lava andesítica, com dacito e riodacito subordinados, além de rochas que compõem a fácies vulcanoclástica, caracterizadas por tufo, lapilli-tufo e brecha polimítica maciça. Essas rochas exibem fenocristais de clinopiroxênio, anfibólio e plagioclásio em uma matriz microlítica ou traquítica. O clinopiroxênio é classificado predominantemente como augita, com diopsídio subordinado, e apresenta caracterísiticas geoquímicas de minerais gerados em rochas de arco magmático. O anfibólio, representado pela magnesiohastingsita, foi formado sob condições oxidantes e apresenta texturas de desequilíbrio, como bordas de oxidação vinculadas à degaseificação por alívio de pressão. As rochas da Formação Santa Rosa foram extravasadas em grandes fissuras crustais de direção NE-SW, têm características de evolução polifásica e compõem uma fácies de fluxo de lava riolítica e riodacítica e uma fácies vulcanoclástica de ignimbritos, lapilli-tufos, tufos de cristais félsicos e brechas polimíticas maciças. Diques métricos e stocks de pórfiros graníticos e granitoides equigranulares completam essa suíte. Fenocristais de feldspato potássico, plagioclásio e quartzo dispersos em matriz de quartzo e feldspato potássico intercrescidos ocorrem nessas rochas. Por meio de análises químicas pontuais dos fenocristais em microssonda eletrônica, foram estimadas as condições de pressão e temperatura de sua formação, sendo que o clinopiroxênio das rochas intermediárias da Formação Sobreiro indica profundidade de formação variável entre 58 e 17,5 km (17,5 - 4,5 kbar), a temperaturas entre 1.294 e 1.082 ºC, enquanto o anfibólio cristalizou-se entre 28 e 15 km (7,8 - 4,1 kbar), o que sugere uma evolução polibárica. Assim, propõe-se um modelo de geração de magma basáltico hidratado com base na fusão parcial de cunha mantélica e no acúmulo na crosta inferior em uma zona quente, a partir da qual os magmas andesíticos e dacíticos são formados pela assimilação de crosta continental e cristalização fracionada.
Resumo:
In this study two ophiolites and a mafic-ultramafic complexes of the northeastern Aegean Sea, Greece, have been investigated to re-evaluate their petrogenetic evolution and tectonic setting. These complexes are: the mafic-ultramafic complex of Lesvos Island and the ophiolites of Samothraki Island and the Evros area. In order to examine these complexes in detail whole-rock major- and trace-elements as well as Sr and Nd isotopes, and minerals were analysed and U-Pb SHRIMP ages on zircons were determined. The mafic-ultramafic complex of Lesvos Island consists of mantle peridotite thrusted over a tectonic mélange containing metasediments, metabasalts and a few metagabbros. This succession had previously been interpreted as an ophiolite of Late Jurassic age. The new field and geochemical data allow a reinterpretation of this complex as representing an incipient continental rift setting that led to the subsequent formation of the Meliata-Maliac-Vardar branches of Neotethys in Upper Permian times (253 ± 6 Ma) and the term “Lesvos ophiolite” should be abandoned. With proceeding subduction and closure of the Maliac Ocean in Late Jurassic times (155 Ma) the Lesvos mafic-ultramafic complex was obducted. Zircon ages of 777, 539 and 338 Ma from a gabbro strongly suggest inheritance from the intruded basement and correspond to ages of distinct terranes recently recognized in the Hellenides (e.g. Florina terrane). Geochemical similar complexes which contain rift associations with Permo-Triassic ages can be found elsewhere in Greece and Turkey, namely the Teke Dere Thrust Sheet below the Lycian Nappes (SW Turkey), the Pindos subophiolitic mélange (W Greece), the Volcanosedimentary Complex on Central Evia Island (Greece) and the Karakaya Complex (NW Turkey). This infers that the rift-related rocks from Lesvos belong to an important Permo-Triassic rifting episode in the eastern Mediterranean. The ‘in-situ’ ophiolite of Samothraki Island comprises gabbros, sparse dykes and basalt flows as well as pillows cut by late dolerite dykes and had conventionally been interpreted as having formed in an ensialic back-arc basin. The results of this study revealed that none of the basalts and dolerites resemble mid-ocean ridge or back-arc basin basalts thus suggesting that the Samothraki ophiolite cannot represent mature back-arc basin crust. The age of the complex is regarded to be 160 ± 5 Ma (i.e. Oxfordian; early Upper Jurassic), which precludes any correlation with the Lesvos mafic-ultramafic complex further south (253 ± 6 Ma; Upper Permian). Restoration of the block configuration in NE Greece, before extensional collapse of the Hellenic hinterland and exhumation of the Rhodope Metamorphic Core Complex (mid-Eocene to mid-Miocene), results in a continuous ophiolite belt from Guevgueli in the NW to Samothraki in the SE, thus assigning the latter to the Innermost Hellenic Ophiolite Belt. In view of the data of this study, the Samothraki ophiolite represents a rift propagation of the Sithonia ophiolite spreading ridge into the Chortiatis calc-alkaline arc. The ophiolite of the Evros area consists of a plutonic sequence comprising cumulate and non-cumulate gabbros with plagiogranite veins, and an extrusive sequence of basalt dykes, massive and pillow lavas as well as pyroclastic rocks. Furthermore, in the Rhodope Massif tectonic lenses of harzburgites and dunites can be found. All rocks are spatially separated. The analytical results of this study revealed an intra-oceanic island arc setting for the Evros ophiolitic rocks. During late Middle Jurassic times (169 ± 2 Ma) an intra-oceanic arc has developed above a northwards directed intra-oceanic subduction zone of the Vardar Ocean in front of the Rhodope Massif. The boninitic, island arc tholeiitic and calc-alkaline rocks reflect the evolution of the Evros island arc. The obduction of the ophiolitic rocks onto the Rhodope basement margin took place during closure of the Vardar ocean basins. The harzburgites and dunites of the Rhodope Massif are strongly depleted and resemble harzburgites from recent oceanic island arcs. After melt extraction they underwent enrichment processes by percolating melts and fluids from the subducted slab. The relationship of the peridotites and the Evros ophiolite is still ambiguous, but the stratigraphic positions of the peridotites and the ophiolitic rocks indicate separated origin. The harzburgites and dunites most probably represent remnants of the mantle wedge of the island arc of the Rhodope terrane formed above subducted slab of the Nestos Ocean in late Middle Jurassic times. During collision of the Thracia terrane with the Rhodope terrane thrusting of the Rhodope terrane onto the Thracia terrane took place, whereas the harzburgites and dunites were pushed between the two terranes now cropping out on top of the Thracia terrane of the Rhodope Massif.
Resumo:
The Suretta nappe of eastern Switzerland contains a series of meta-igneous rocks, with the Rofna Porphyry Complex (RPC) being the most prominent member. We present LA-ICP-MS U–Pb zircon data from 12 samples representing a broad spectrum of meta-igneous rocks within the Suretta nappe, in order to unravel the pre-Alpine magmatic history of this basement unit. Fine-grained porphyries and coarse-grained augengneisses from the RPC give crystallization ages between 284 and 271 Ma, which either represent distinct magma pulses or long-lasting magmatic activity in a complex magma chamber. There is also evidence for an earlier Variscan magmatic event at ~320–310 Ma. Mylonites at the base of the Suretta nappe are probably derived from either the RPC augengneisses or another unknown Carboniferous–Permian magmatic protolith with a crystallization age between 320 and 290 Ma. Two polymetamorphic orthogneisses from the southern Suretta nappe yield crystallization ages of ~490 Ma. Inherited zircon cores are mainly of late Neoproterozoic age, with minor Neo- to Paleoproterozoic sources. We interpret the Suretta nappe as mainly representing a Gondwana-derived crustal unit, which was subsequently intruded by minor Cambrian–Ordovician and major Carboniferous–Permian magmatic rocks. Finally, the Suretta nappe was thrust into its present position during the Alpine orogeny, which hardly affected the U–Pb system in zircon.
Resumo:
Geochemical data are presented for samples from strata, mainly of Miocene age, in the Cape Roberts-1 core (western McMurdo Sound, Antarctica) to assess the sediment provenance. Bulk (major and trace element) chemistry together with bulk mineralogy of fine-grained sandstones, siltstones, mudstones, and diamictites indicate that chemical alteration of source materials, fractionation due to sedimentary sorting, and diagenetic effects were not significant in the Cape Roberts sediment history. Relevant geochemical parameters are consistent with the Cape Roberts sediments being derived mainly from the crystalline basement and the Beacon Supergroup. On the basis of element distributions, an additional contribution from the Ferrar Dolerite and, mainly above about 60 m, influxes of detritus derived from basanitic to intermediate members of the McMurdo Volcanic Group are recognised.