971 resultados para Diluted nitric acid
Resumo:
"Contract No. AT(49-1)-538."
Resumo:
Reprinted from th Journal of the chemical society, July 1880.
Resumo:
Issued March 1976.
Resumo:
Peer reviewed
Resumo:
Colourless needles of mercurous dimethylglyoximato nitrate, Hg-2(Dmg)(2)(NO3)(2), grow from a diluted nitric acid solution of mercurous nitrate and dimethylglyoxime. The crystal structure (triclinic, P (1) over bar, a = 728.50(13), b = 1066.8(2), c = 1167.9(2) pm, alpha = 93.78(2)degrees, beta = 94.16(2)degrees, gamma = 98.61(2)degrees, R-all = 0,0726) contains the cations [Hg-2(Dmg)(2)](2+) and
Resumo:
Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A method for the total mercury determination in fish and shrimps employing chronopotentiometric stripping analysis on gold film electrodes is described. Fish and shrimp tissues were digested using a microwave oven equipped with closed vessels. We developed a microwave heating program which decomposed all the samples employing diluted nitric acid and hydrogen peroxide. The proposed method was validated by analyzing a certified reference material and then applied for different fish species from fresh water and seawater acquired in local markets of São Paulo city, Brazil. The Brazilian legislation establishes 0.5 and 1 mg per kilogram of fish as upper limit of mercury for omnivorous and predator species, respectively. Except for blue shark tissues, the mercury content was situated below 0.5 mu g g(-1) for all the analyzed samples. The detection limit of the proposed method was calculated as 5 ng g(-1) of sample utilizing 5 minutes of electrodeposition (+300 mV vs. Ag/AgCl) on the gold electrode. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Different conditions of extraction using water, a methanol-water mixture and nitric acid solutions were evaluated for speciation of As(iii), As(v), DMA and MMA in plant samples that previously received As(v) after being sown and emergence was investigated. Microwave-assisted extraction (MAE) using diluted nitric acid solutions was also performed for arsenic extraction from chicken feed samples. The separation and determination of arsenic species were performed using HPLC-ICP-MS. The interference standard method (IFS) using 83Kr+ as the IFS probe was employed to minimize spectral interferences caused by polyatomic species, such as 40Ar 35Cl+. The extraction procedures tested presented adequate extraction efficiencies (90%), and the four arsenic species evaluated were found in plant samples. Extractions with diluted nitric acid solution at 90 °C were the most efficient strategy, with quantitative recoveries for all four As species in plant tissues. On the other hand, the methanol-water mixture was the solvent with the lowest extraction efficiency (50-60%). For chicken feed samples, MAE at 100 °C for 30 min resulted in an extraction efficiency of 97% and only As(v) was found, without any species interconversion. The IFS method contributed to improving precision and limits of detection and quantification for all tested extraction procedures. Significant improvements on accuracy were obtained by applying the IFS method and recoveries between 77 and 94%, and 82 and 93% were obtained for plant extracts and chicken feed samples, respectively. This journal is © 2013 The Royal Society of Chemistry.
Resumo:
B. cereus is a gram-positive bacterium that possesses two different forms of life:the large, rod-shaped cells (ca. 0.002 mm by 0.004 mm) that are able to propagate and the small (0.001 mm), oval shaped spores. The spores can survive in almost any environment for up to centuries without nourishment or water. They are insensitive towards most agents that normally kill bacteria: heating up to several hours at 90 ºC, radiation, disinfectants and extreme alkaline (≥ pH 13) and acid (≤ pH 1) environment. The spores are highly hydrophobic and therefore make them tend to stick to all kinds of surfaces, steel, plastics and live cells. In favorable conditions the spores of B. cereus may germinate into vegetative cells capable of producing food poisoning toxins. The toxins can be heat-labile protein formed after ingestion of the contaminated food, inside the gastrointestinal tract (diarrhoeal toxins), or heat stable peptides formed in the food (emesis causing toxin, cereulide). Cereulide cannot be inactivated in foods by cooking or any other procedure applicable on food. Cereulide in consumed food causes serious illness in human, even fatalities. In this thesis, B. cereus strains originating from different kinds of foods and environments and 8 different countries were inspected for their capability of forming cereulide. Of the 1041 isolates from soil, animal feed, water, air, used bedding, grass, dung and equipment only 1.2 % were capable of producing cereulide, whereas of the 144 isolates originating from foods 24 % were cereulide producers. Cereulide was detected by two methods: by its toxicity towards mammalian cells (sperm assay) and by its peculiar chemical structure using liquid-chromatograph-mass spectrometry equipment. B. cereus is known as one of the most frequent bacteria occurring in food. Most foods contain more than one kind of B. cereus. When randomly selected 100 isolates of B. cereus from commercial infant foods (dry formulas) were tested, 11% of these produced cereulide. Considering a frequent content of 103 to 104 cfu (colony forming units) of B. cereus per gram of infant food formula (dry), it appears likely that most servings (200 ml, 30 g of the powder reconstituted with water) may contain cereulide producers. When a reconstituted infant formula was inoculated with >105 cfu of cereulide producing B. cereus per ml and left at room temperature, cereulide accumulated to food poisoning levels (> 0.1 mg of cereulide per serving) within 24 hours. Paradoxically, the amount of cereulide (per g of food) increased 10 to 50 fold when the food was diluted 4 - 15 fold with water. The amount of the produced cereulide strongly depended on the composition of the formula: most toxin was formed in formulas with cereals mixed with milk, and least toxin in formulas based on milk only. In spite of the aggressive cleaning practices executed by the modern dairy industry, certain genotypes of B. cereus appear to colonise the silos tanks. In this thesis four strategies to explain their survival of their spores in dairy silos were identified. First, high survival (log 15 min kill ≤ 1.5) in the hot alkaline (pH >13) wash liquid, used at the dairies for cleaning-in-place. Second, efficient adherence of the spores to stainless steel from cold water. Third, a cereulide producing group with spores characterized by slow germination in rich medium and well preserved viability when exposed to heating at 90 ºC. Fourth, spores capable of germinating at 8 ºC and possessing the psychrotolerance gene, cspA. There were indications that spores highly resistant to hot 1% sodium hydroxide may be effectively inactivated by hot 0.9% nitric acid. Eight out of the 14 dairy silo tank isolates possessing hot alkali resistant spores were capable of germinating and forming biofilm in whole milk, not previously reported for B. cereus. In this thesis it was shown that cereulide producing B. cereus was capable of inhibiting the growth of cereulide non-producing B. cereus occurring in the same food. This phenomenon, called antagonism, has long been known to exist between B. cereus and other microbial species, e.g. various species of Bacillus, gram-negative bacteria and plant pathogenic fungi. In this thesis intra-species antagonism of B. cereus was shown for the first time. This brother-killing did not depend on the cereulide molecule, also some of the cereulide non-producers were potent antagonists. Interestingly, the antagonistic clades were most frequently found in isolates from food implicated with human illness. The antagonistic property was therefore proposed in this thesis as a novel virulence factor that increases the human morbidity of the species B. cereus, in particular of the cereulide producers.
Resumo:
Part I
A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.
The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.
The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.
Part II
The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.
For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.
The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.
Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.