998 resultados para Digital Sampling
Resumo:
Soil data and reliable soil maps are imperative for environmental management. conservation and policy. Data from historical point surveys, e.g. experiment site data and farmers fields can serve this purpose. However, legacy soil information is not necessarily collected for spatial analysis and mapping such that the data may not have immediately useful geo-references. Methods are required to utilise these historical soil databases so that we can produce quantitative maps of soil propel-ties to assess spatial and temporal trends but also to assess where future sampling is required. This paper discusses two such databases: the Representative Soil Sampling Scheme which has monitored the agricultural soil in England and Wales from 1969 to 2003 (between 400 and 900 bulked soil samples were taken annually from different agricultural fields); and the former State Chemistry Laboratory, Victoria, Australia where between 1973 and 1994 approximately 80,000 soil samples were submitted for analysis by farmers. Previous statistical analyses have been performed using administrative regions (with sharp boundaries) for both databases, which are largely unrelated to natural features. For a more detailed spatial analysis that call be linked to climate and terrain attributes, gradual variation of these soil properties should be described. Geostatistical techniques such as ordinary kriging are suited to this. This paper describes the format of the databases and initial approaches as to how they can be used for digital soil mapping. For this paper we have selected soil pH to illustrate the analyses for both databases.
Resumo:
To provide reliable estimates for mapping soil properties for precision agriculture requires intensive sampling and costly laboratory analyses. If the spatial structure of ancillary data, such as yield, digital information from aerial photographs, and soil electrical conductivity (EC) measurements, relates to that of soil properties they could be used to guide the sampling intensity for soil surveys. Variograins of permanent soil properties at two study sites on different parent materials were compared with each other and with those for ancillary data. The ranges of spatial dependence identified by the variograms of both sets of properties are of similar orders of magnitude for each study site, Maps of the ancillary data appear to show similar patterns of variation and these seem to relate to those of the permanent properties of the soil. Correlation analysis has confirmed these relations. Maps of kriged estimates from sub-sampled data and the original variograrns showed that the main patterns of variation were preserved when a sampling interval of less than half the average variogram range of ancillary data was used. Digital data from aerial photographs for different years and EC appear to show a more consistent relation with the soil properties than does yield. Aerial photographs, in particular those of bare soil, seem to be the most useful ancillary data and they are often cheaper to obtain than yield and EC data.
Resumo:
Although accuracy of digital elevation models (DEMs) can be quantified and measured in different ways, each is influenced by three main factors: terrain character, sampling strategy and interpolation method. These parameters, and their interaction, are discussed. The generation of DEMs from digitised contours is emphasised because this is the major source of DEMs, particularly within member countries of OEEPE. Such DEMs often exhibit unwelcome artifacts, depending on the interpolation method employed. The origin and magnitude of these effects and how they can be reduced to improve the accuracy of the DEMs are also discussed.
Resumo:
In this paper a new algorithmic of Analog-to-Digital Converter is presented. This new topology use the current-mode technique that allows a large dynamic range and can be implemented in digital CMOS process. The ADC proposed is very small and can handle high sampling rates. Simulation results using a 1.2um CMOS process show that an 8-b ADC can support a sampling rate of 50MHz.
Resumo:
This paper describes a speech enhancement system (SES) based on a TMS320C31 digital signal processor (DSP) for real-time application. The SES algorithm is based on a modified spectral subtraction method and a new speech activity detector (SAD) is used. The system presents a medium computational load and a sampling rate up to 18 kHz can be used. The goal is load and a sampling rate up to 18 kHz can be used. The goal is to use it to reduce noise in an analog telephone line.
Resumo:
Grinding process is usually the last finishing process of a precision component in the manufacturing industries. This process is utilized for manufacturing parts of different materials, so it demands results such as low roughness, dimensional and shape error control, optimum tool-life, with minimum cost and time. Damages on the parts are very expensive since the previous processes and the grinding itself are useless when the part is damaged in this stage. This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 e VC131 steels. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. In each test AE data was analyzed off-line, with results compared to inspection of each workpiece for burn and other metallurgical anomaly. A number of statistical signal processing tools have been evaluated.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O presente trabalho trata da filtragem e reconstrução de sinais em frequência intermediária usando FPGA. É feito o desenvolvimento de algoritmos usando processamento digital de sinais e também a implementação dos mesmos, constando desde o projeto da placa de circuito impresso, montagem e teste. O texto apresenta um breve estudo de amostragem e reconstrução de sinais em geral. Especial atenção é dada à amostragem de sinais banda-passante e à análise de questões práticas de reconstrução de sinais em frequência intermediária. Dois sistemas de reconstrução de sinais baseados em processamento digital de sinais, mais especificamente reamostragem no domínio discreto, são apresentados e analisados. São também descritas teorias de processos de montagem e soldagem de placas eletrônicas com objetivo de definir uma metodologia de projeto, montagem e soldagem de placas eletrônicas. Tal metodologia é aplicada no projeto e manufatura do protótipo de um módulo de filtragem digital para repetidores de telefonia celular. O projeto, implementado usando FPGA, é baseado nos dois sistemas supracitados. Ao final do texto, resultados obtidos em experimentos de filtragem digital e reconstrução de sinais em frequência intermediária com o protótipo desenvolvido são apresentados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There is increasing interest in the diving behavior of marine mammals. However, identifying foraging among recorded dives often requires several assumptions. The simultaneous acquisition of images of the prey encountered, together with records of diving behavior will allow researchers to more fully investigate the nature of subsurface behavior. We tested a novel digital camera linked to a time-depth recorder on Antarctic fur seals (Arctocephalus gazella). During the austral summer 2000-2001, this system was deployed on six lactating female fur seals at Bird Island, South Georgia, each for a single foraging trip. The camera was triggered at depths greater than 10 m. Five deployments recorded still images (640 x 480 pixels) at 3-sec intervals (total 8,288 images), the other recorded movie images at 0.2-sec intervals (total 7,598 frames). Memory limitation (64 MB) restricted sampling to approximately 1.5 d of 5-7 d foraging trips. An average of 8.5% of still pictures (2.4%-11.6%) showed krill (Euphausia superba) distinctly, while at least half the images in each deployment were empty, the remainder containing blurred or indistinct prey. In one deployment krill images were recorded within 2.5 h (16 km, assuming 1.8 m/sec travel speed) of leaving the beach. Five of the six deployments also showed other fur seals foraging in conjunction with the study animal. This system is likely to generate exciting new avenues for interpretation of diving behavior.
Resumo:
We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-C-13,N-15)/74-108-(U-N-15) Escherichia coil thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.