913 resultados para Differential inclusions
Resumo:
AMS subject classification: Primary 34A60, Secondary 49K24.
Resumo:
The converse statement of the Filippov-Wazewski relaxation theorem is proven, more precisely, two differential inclusions have the same closure of their solution sets if and only if the right-hand sides have the same convex hull. The idea of the proof is examining the contingent derivatives to the attainable sets.
Resumo:
A brief introduction into the theory of differential inclusions, viability theory and selections of set valued mappings is presented. As an application the implicit scheme of the Leontief dynamic input-output model is considered.
Resumo:
We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).
Resumo:
A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1–σ3σ1–σ3) of ∼300 MPa∼300 MPa at View the MathML source390±30°C during late Miocene NNW–SSE orogenic shortening and regional uplift of the Aar Massif. This differential stress resulted in strain-hardening of the quartz at very low total strain (<5%<5%) while nearby shear zones were accommodating significant displacements. Further implementation of these experimentally derived rules should provide new insight into processes of fluid–rock interaction in the ductile regime within the Earth's crust.
Resumo:
The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn-82-Pb-18,Pb- Sn-64-Pb-36, and Sn-54-Pb-46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al-(Sn-82-Pb-18), we report a new orientation relation given by [011]Al//[010]Sn and (011)Al//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn-64-Pb-36 and Sn-54-Pb-46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation. characteristics.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.
Resumo:
In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.
Resumo:
In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.