987 resultados para Diastolic function
Resumo:
Background: The incidence of all forms of congenital heart defects is 0.75%. For patients with congenital heart defects, life-expectancy has improved with new treatment modalities. Structural heart defects may require surgical or catheter treatment which may be corrective or palliative. Even those with corrective therapy need regular follow-up due to residual lesions, late sequelae, and possible complications after interventions. Aims: The aim of this thesis was to evaluate cardiac function before and after treatment for volume overload of the right ventricle (RV) caused by atrial septal defect (ASD), volume overload of the left ventricle (LV) caused by patent ductus arteriosus (PDA), and pressure overload of the LV caused by coarctation of the aorta (CoA), and to evaluate cardiac function in patients with Mulibrey nanism. Methods: In Study I, of the 24 children with ASD, 7 underwent surgical correction and 17 percutaneous occlusion of ASD. Study II had 33 patients with PDA undergoing percutaneous occlusion. In Study III, 28 patients with CoA underwent either surgical correction or percutaneous balloon dilatation of CoA. Study IV comprised 26 children with Mulibrey nanism. A total of 76 healthy voluntary children were examined as a control group. In each study, controls were matched to patients. All patients and controls underwent clinical cardiovascular examinations, two-dimensional (2D) and three-dimensional (3D) echocardiographic examinations, and blood sampling for measurement of natriuretic peptides prior to the intervention and twice or three times thereafter. Control children were examined once by 2D and 3D echocardiography. M-mode echocardiography was performed from the parasternal long axis view directed by 2D echocardiography. The left atrium-to-aorta (LA/Ao) ratio was calculated as an index of LA size. The end-diastolic and end-systolic dimensions of LV as well as the end-diastolic thicknesses of the interventricular septum and LV posterior wall were measured. LV volumes, and the fractional shortening (FS) and ejection fraction (EF) as indices of contractility were then calculated, and the z scores of LV dimensions determined. Diastolic function of LV was estimated from the mitral inflow signal obtained by Doppler echocardiography. In three-dimensional echocardiography, time-volume curves were used to determine end-diastolic and end-systolic volumes, stroke volume, and EF. Diastolic and systolic function of LV was estimated from the calculated first derivatives of these curves. Results: (I): In all children with ASD, during the one-year follow-up, the z score of the RV end-diastolic diameter decreased and that of LV increased. However, dilatation of RV did not resolve entirely during the follow-up in either treatment group. In addition, the size of LV increased more slowly in the surgical subgroup but reached control levels in both groups. Concentrations of natriuretic peptides in patients treated percutaneously increased during the first month after ASD closure and normalized thereafter, but in patients treated surgically, they remained higher than in controls. (II): In the PDA group, at baseline, the end-diastolic diameter of LV measured over 2SD in 5 of 33 patients. The median N-terminal pro-brain natriuretic peptide (proBNP) concentration before closure measured 72 ng/l in the control group and 141 ng/l in the PDA group (P = 0.001) and 6 months after closure measured 78.5 ng/l (P = NS). Patients differed from control subjects in indices of LV diastolic and systolic function at baseline, but by the end of follow-up, all these differences had disappeared. Even in the subgroup of patients with normal-sized LV at baseline, the LV end-diastolic volume decreased significantly during follow-up. (III): Before repair, the size and wall thickness of LV were higher in patients with CoA than in controls. Systolic blood pressure measured a median 123 mm Hg in patients before repair (P < 0.001) and 103 mm Hg one year thereafter, and 101 mm Hg in controls. The diameter of the coarctation segment measured a median 3.0 mm at baseline, and 7.9 at the 12-month (P = 0.006) follow-up. Thicknesses of the interventricular septum and posterior wall of the LV decreased after repair but increased to the initial level one year thereafter. The velocity time integrals of mitral inflow increased, but no changes were evident in LV dimensions or contractility. During follow-up, serum levels of natriuretic peptides decreased correlating with diastolic and systolic indices of LV function in 2D and 3D echocardiography. (IV): In 2D echocardiography, the interventricular septum and LV posterior wall were thicker, and velocity time integrals of mitral inflow shorter in patients with Mulibrey nanism than in controls. In 3D echocardiography, LV end-diastolic volume measured a median 51.9 (range 33.3 to 73.4) ml/m² in patients and 59.7 (range 37.6 to 87.6) ml/m² in controls (P = 0.040), and serum levels of ANPN and proBNP a median 0.54 (range 0.04 to 4.7) nmol/l and 289 (range 18 to 9170) ng/l, in patients and 0.28 (range 0.09 to 0.72) nmol/l (P < 0.001) and 54 (range 26 to 139) ng/l (P < 0.001) in controls. They correlated with several indices of diastolic LV function. Conclusions (I): During the one-year follow-up after the ASD closure, RV size decreased but did not normalize in all patients. The size of the LV normalized after ASD closure but the increase in LV size was slower in patients treated surgically than in those treated with the percutaneous technique. Serum levels of ANPN and proBNP were elevated prior to ASD closure but decreased thereafter to control levels in patients treated with the percutaneous technique but not in those treated surgically. (II): Changes in LV volume and function caused by PDA disappeared by 6 months after percutaneous closure. Even the children with normal-sized LV benefited from the procedure. (III): After repair of CoA, the RV size and the velocity time integrals of mitral inflow increased, and serum levels of natriuretic peptides decreased. Patients need close follow-up, despite cessation of LV pressure overload, since LV hypertrophy persisted even in normotensive patients with normal growth of the coarctation segment. (IV): In children with Mulibrey nanism, the LV wall was hypertrophied, with myocardial restriction and impairment of LV function. Significant correlations appeared between indices of LV function, size of the left atrium, and levels of natriuretic peptides, indicating that measurement of serum levels of natriuretic peptides can be used in the clinical follow-up of this patient group despite its dependence on loading conditions.
Resumo:
The interest in the study of ventricular function has grown considerably in the last decades. In this review, we analyse the extreme values of ventricular function as obtained with Doppler echocardiography. We mainly focus on the parameters that have been used throughout the history of Doppler echocardiography to assess left ventricular (LV) systolic and diastolic function. The ‘athlete's heart’ would be the highest expression of ventricular function whereas its lowest expression is represented by the failing heart, independently from the original aetiology leading to this condition. There are, however, morphological similarities (dilation and hypertrophy) between the athlete's and the failing heart, which emerge as physiological and pathophysiological adaptations, respectively. The introduction of new assessment techniques, specifically speckle tracking, may provide new insight into the properties that determine ventricular filling, specifically left ventricular twisting. The concept of ventricular function must be always considered, although it may not be always possible to distinguish the normal heart of sedentary individuals from that of highly trained hearts based solely on echocardiographic or basic studies.
Resumo:
OBJECTIVES: The goal of this study was to determine whether subclinical thyroid dysfunction was associated with incident heart failure (HF) and echocardiogram abnormalities. BACKGROUND: Subclinical hypothyroidism and hyperthyroidism have been associated with cardiac dysfunction. However, long-term data on the risk of HF are limited. METHODS: We studied 3,044 adults>or=65 years of age who initially were free of HF in the Cardiovascular Health Study. We compared adjudicated HF events over a mean 12-year follow-up and changes in cardiac function over the course of 5 years among euthyroid participants, those with subclinical hypothyroidism (subdivided by thyroid-stimulating hormone [TSH] levels: 4.5 to 9.9, >or=10.0 mU/l), and those with subclinical hyperthyroidism. RESULTS: Over the course of 12 years, 736 participants developed HF events. Participants with TSH>or=10.0 mU/l had a greater incidence of HF compared with euthyroid participants (41.7 vs. 22.9 per 1,000 person years, p=0.01; adjusted hazard ratio: 1.88; 95% confidence interval: 1.05 to 3.34). Baseline peak E velocity, which is an echocardiographic measurement of diastolic function associated with incident HF in the CHS cohort, was greater in those patients with TSH>or=10.0 mU/l compared with euthyroid participants (0.80 m/s vs. 0.72 m/s, p=0.002). Over the course of 5 years, left ventricular mass increased among those with TSH>or=10.0 mU/l, but other echocardiographic measurements were unchanged. Those patients with TSH 4.5 to 9.9 mU/l or with subclinical hyperthyroidism had no increase in risk of HF. CONCLUSIONS: Compared with euthyroid older adults, those adults with TSH>or=10.0 mU/l have a moderately increased risk of HF and alterations in cardiac function but not older adults with TSH<10.0 mU/l. Clinical trials should assess whether the risk of HF might be ameliorated by thyroxine replacement in individuals with TSH>or=10.0 mU/l.
Resumo:
Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.
Resumo:
The aim of the present study was to evaluate the-effect of interstitial fibrosis alone or associated with hypertrophy. on diastolic myocardial function in renovascular hypertensive rats. Myocardial function was evaluated in isolated papillary muscle from renovascular hypertensive Wistar rats (RHT, n = 14), renovascular hypertensive rats treated with the angiotensin converting enzyme inhibitor (ACEI) ramipril, 20 mg.kg(-1).day(-1) (RHT RAM, n = 14), and age-matched unoperated and untreated Wistar rats (CONT, n = 12). The ACEI treatment for 3 weeks allowed the regression of myocyte mass and the maintenance of interstitial fibrosis. Myocardial passive stiffness was analyzed by the resting tension - length relationship. The myocardial fibrosis was evaluated by measuring myocardial hydroxyproline (Hyp) concentration and by histological studies of the myocardium stained with hematoxylin and eosin or picrosirius red. Left ventricular weight was significantly higher in RHT (0.97 +/- 0.12 g) compared with CONT (0.66 +/- 0.06 g) and RHT RAM (0.69 +/- 0.14 g). The Hyp levels were 2.9 +/- 0.4, 3.4 +/- 0.3, and 3.8 +/- 0.4 mu g/mg of dry tissue for the CONT, RHT, and RHT RAM, respectively. Perivascular and interstitial fibrosis were observed in RHT and RHT RAM groups. There were lymphomononuclear inflammatory exudate and edema around arteries, involving adjacent myocytes in the RHT group. There was an increased passive stiffness in RHT and RHT RAM groups compared with the CONT group. In conclusion, our results indicate that the Impaired diastolic function in the renovascular hypertensive rats is related to interstitial fibrosis rather than to myocardial hypertrophy.
Resumo:
OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 +/- 0.2 vs. C: 4.5 +/- 0.2 mg/dl/min), hypertension (mean blood pressure, F: 118 +/- 3 vs. C: 104 +/- 4 mmHg) and obesity (F: 0.31 +/- 0.001 vs. C: 0.29 +/- 0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.
Resumo:
BACKGROUND: Regression of left ventricular (LV) hypertrophy with normalization of diastolic function has been reported in patients with aortic stenosis late after aortic valve replacement (AVR). The purpose of the present study was to evaluate the effect of AVR on LV function and structure in chronic aortic regurgitation early and late after AVR. METHODS AND RESULTS: Twenty-six patients were included in the present analysis. Eleven patients with severe aortic regurgitation were studied before, early (21 months) and late (89 months) after AVR through the use of LV biplane angiograms, high-fidelity pressure measurements, and LV endomyocardial biopsies. Fifteen healthy subjects were used as controls. LV systolic function was determined from biplane ejection fraction and midwall fractional shortening. LV diastolic function was calculated from the time constant of LV relaxation, peak filling rates, and myocardial stiffness constant. LV structure was assessed from muscle fiber diameter, interstitial fibrosis, and fibrous content. LV muscle mass decreased significantly by 38% early and 55% late after surgery. Ejection fraction was significantly reduced preoperatively and did not change after AVR (P=NS). LV relaxation was significantly prolonged before surgery (89+/-28 ms) but was normalized late after AVR (42+/-14 ms). Early and late peak filling rates were increased preoperatively but normalized postoperatively. Diastolic stiffness constant was increased before surgery (22+/-6 versus 9+/-3 in control subjects; P=0.0003) and remained elevated early and late after AVR (23+/-4; P=0.002). Muscle fiber diameter decreased significantly after AVR but remained increased at late follow-up. Interstitial fibrosis was increased preoperatively and increased even further early but decreased late after AVR. Fibrosis was positively linearly correlated to myocardial stiffness and inversely correlated to LV ejection fraction. CONCLUSIONS: Patients with aortic regurgitation show normalization of macroscopic LV hypertrophy late after AVR, although fiber hypertrophy persists. These changes in LV myocardial structure late after AVR are accompanied by a change in passive elastic properties with persistent diastolic dysfunction.
Resumo:
BACKGROUND: Peak oxygen uptake (peak Vo(2)) is an established integrative measurement of maximal exercise capacity in cardiovascular disease. After heart transplantation (HTx) peak Vo(2) remains reduced despite normal systolic left ventricular function, which highlights the relevance of diastolic function. In this study we aim to characterize the predictive significance of cardiac allograft diastolic function for peak Vo(2). METHODS: Peak Vo(2) was measured using a ramp protocol on a bicycle ergometer. Left ventricular (LV) diastolic function was assessed with tissue Doppler imaging sizing the velocity of the early (Ea) and late (Aa) apical movement of the mitral annulus, and conventional Doppler measuring early (E) and late (A) diastolic transmitral flow propagation. Correlation coefficients were calculated and linear regression models fitted. RESULTS: The post-transplant time interval of the 39 HTxs ranged from 0.4 to 20.1 years. The mean age of the recipients was 55 +/- 14 years and body mass index (BMI) was 25.4 +/- 3.9 kg/m(2). Mean LV ejection fraction was 62 +/- 4%, mean LV mass index 108 +/- 22 g/m(2) and mean peak Vo(2) 20.1 +/- 6.3 ml/kg/min. Peak Vo(2) was reduced in patients with more severe diastolic dysfunction (pseudonormal or restrictive transmitral inflow pattern), or when E/Ea was > or =10. Peak Vo(2) correlated with recipient age (r = -0.643, p < 0.001), peak heart rate (r = 0.616, p < 0.001) and BMI (r = -0.417, p = 0.008). Of all echocardiographic measurements, Ea (r = 0.561, p < 0.001) and Ea/Aa (r = 0.495, p = 0.002) correlated best. Multivariate analysis identified age, heart rate, BMI and Ea/Aa as independent predictors of peak Vo(2). CONCLUSIONS: Diastolic dysfunction is relevant for the limitation of maximal exercise capacity after HTx.
Resumo:
Background Left atrium (LA) dilation and P-wave duration are linked to the amount of endurance training and are risk factors for atrial fibrillation (AF). The aim of this study was to evaluate the impact of LA anatomical and electrical remodeling on its conduit and pump function measured by two-dimensional speckle tracking echocardiography (STE). Method Amateur male runners > 30 years were recruited. Study participants (n = 95) were stratified in 3 groups according to lifetime training hours: low (< 1500 h, n = 33), intermediate (1500 to 4500 h, n = 32) and high training group (> 4500 h, n = 30). Results No differences were found, between the groups, in terms of age, blood pressure, and diastolic function. LA maximal volume (30 ± 5, 33 ± 5 vs. 37 ± 6 ml/m2, p < 0.001), and conduit volume index (9 ± 3, 11 ± 3 vs. 12 ± 3 ml/m2, p < 0.001) increased significantly from the low to the high training group, unlike the STE parameters: pump strain − 15.0 ± 2.8, − 14.7 ± 2.7 vs. − 14.9 ± 2.6%, p = 0.927; conduit strain 23.3 ± 3.9, 22.1 ± 5.3 vs. 23.7 ± 5.7%, p = 0.455. Independent predictors of LA strain conduit function were age, maximal early diastolic velocity of the mitral annulus, heart rate and peak early diastolic filling velocity. The signal-averaged P-wave (135 ± 11, 139 ± 10 vs. 148 ± 14 ms, p < 0.001) increased from the low to the high training group. Four episodes of non-sustained AF were recorded in one runner of the high training group. Conclusion The LA anatomical and electrical remodeling does not have a negative impact on atrial mechanical function. Hence, a possible link between these risk factors for AF and its actual, rare occurrence in this athlete population, could not be uncovered in the present study.
Resumo:
UNLABELLED Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls: brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01780207.
Resumo:
Vascular disease is accelerated in patients with Type 2 diabetes mellitus (T2DM). Since the systemic vasculature plays a pivotal role in myocardial loading, this study aimed to determine the effect of arterial characteristics on left ventricular (LV) morphology and function in patients with T2DM. Conventional echocardiography and tissue Doppler imaging were performed in 172 T2DM patients (95 men; aged 55±11y) with preserved ejection fraction (62±5%). Patients were stratified into groups based on LV geometric pattern (normal [n = 79], concentric remodeling [n = 33], concentric hypertrophy [n = 29], eccentric hypertrophy [n = 31]). Total arterial compliance (TAC) was recorded by simultaneous radial tonometry and aortic outflow pulsed wave Doppler. Arterial (brachial and carotid) structure and function were determined by standard ultrasound methods. There were no significant differences between the LV geometric groups in demographic or clinical parameters. The concentric hypertrophy group had significantly increased carotid artery diameter (6.0±0.7mm versus 6.5±0.7mm; p < 0.05) and stiffness (1912±1203 dynes/cm2mm versus 2976±2695 dynes/cm2mm×10−6; p < 0.05) compared to those with normal geometry. However, TAC did not differ between groups. LV diastolic function, as determined by the ratio of diastolic mitral inflow velocity to mitral annulus tissue velocity (E/E_), was significantly associated with carotid artery relative wall thickness and intima media thickness (p < 0.05). Moreover, E/E_ was independently predicted by carotid artery relative wall thickness (β = 22.9; p = 0.007). We conclude that structural characteristics of the carotid artery are associated with abnormal LV structure and function in patients with T2DM. The LV functional irregularities may be a downstream consequence of amplified pressure wave reflections effecting sub-optimal ventricular-vascular interaction.
Resumo:
OBJECTIVES: This study was designed to evaluate the impact of eplerenone on collagen turnover in preserved systolic function heart failure (HFPSF).
BACKGROUND: Despite growing interest in abnormal collagen metabolism as a feature of HFPSF with diastolic dysfunction, the natural history of markers of collagen turnover and the impact of selective aldosterone antagonism on this natural history remains unknown.
METHODS: We evaluated 44 patients with HFPSF, randomly assigned to control (n = 20) or eplerenone 25 mg daily (n = 24) for 6 months, increased to 50 mg daily from 6 to 12 months. Serum markers of collagen turnover and inflammation were analyzed at baseline and at 6 and 12 months and included pro-collagen type-I and -III aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha. Doppler-echocardiographic assessment of diastolic filling indexes and tissue Doppler analyses were also obtained.
RESULTS: The mean age of the patients was 80 +/- 7.8 years; 46% were male; 64% were receiving an angiotensin-converting enzyme inhibitor, 34% an angiotensin-II receptor blocker, and 68% were receiving beta-blocker therapy. Pro-collagen type-III and -I aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha increased with time in the control group. Eplerenone treatment had no significant impact on any biomarker at 6 months but attenuated the increase in pro-collagen type-III aminoterminal peptide at 12 months (p = 0.006). Eplerenone therapy was associated with modest effects on diastolic function without any impact on clinical variables or brain natriuretic peptide.
CONCLUSIONS: This study demonstrates progressive increases in markers of collagen turnover and inflammation in HFPSF with diastolic dysfunction. Despite high background utilization of renin-angiotensin-aldosterone modulators, eplerenone therapy prevents a progressive increase in pro-collagen type-III aminoterminal peptide and may have a role in management of this disease. (The Effect of Eplerenone and Atorvastatin on Markers of Collagen Turnover in Diastolic Heart Failure; NCT00505336).
Resumo:
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.