165 resultados para Cytokinesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional myosin II plays a fundamental role in the process of cytokinesis where, in the form of bipolar thick filaments, it is thought to be the molecular motor that generates the force necessary to divide the cell. In Dictyostelium, the formation of thick filaments is regulated by the phosphorylation of three threonine residues in the tail region of the myosin heavy chain. We report here on the effects of this regulation on the localization of myosin in live cells undergoing cytokinesis. We imaged fusion proteins of the green-fluorescent protein with wild-type myosin and with myosins where the three critical threonines had been changed to either alanine or aspartic acid. We provide evidence that thick filament formation is required for the accumulation of myosin in the cleavage furrow and that if thick filaments are overproduced, this accumulation is markedly enhanced. This suggests that myosin localization in dividing cells is regulated by myosin heavy chain phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the role of myosin in cytokinesis in Dictyostelium cells by examining cells under both adhesive and nonadhesive conditions. On an adhesive surface, both wild-type and myosin-null cells undergo the normal processes of mitotic rounding, cell elongation, polar ruffling, furrow ingression, and separation of daughter cells. When cells are denied adhesion through culturing in suspension or on a hydrophobic surface, wild-type cells undergo these same processes. However, cells lacking myosin round up and polar ruffle, but fail to elongate, furrow, or divide. These differences show that cell division can be driven by two mechanisms that we term Cytokinesis A, which requires myosin, and Cytokinesis B, which is cell adhesion dependent. We have used these approaches to examine cells expressing a myosin whose two light chain-binding sites were deleted (ΔBLCBS-myosin). Although this myosin is a slower motor than wild-type myosin and has constitutively high activity due to the abolition of regulation by light-chain phosphorylation, cells expressing ΔBLCBS-myosin were previously shown to divide in suspension (Uyeda et al., 1996). However, we suspected their behavior during cytokinesis to be different from wild-type cells given the large alteration in their myosin. Surprisingly, ΔBLCBS-myosin undergoes relatively normal spatial and temporal changes in localization during mitosis. Furthermore, the rate of furrow progression in cells expressing a ΔBLCBS-myosin is similar to that in wild-type cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As in many eukaryotic cells, fission yeast cytokinesis depends on the assembly of an actin ring. We cloned myp2+, a myosin-II in Schizosaccharomyces pombe, conditionally required for cytokinesis. myp2+, the second myosin-II identified in S. pombe, does not completely overlap in function with myo2+. The catalytic domain of Myp2p is highly homologous to known myosin-IIs, and phylogenetic analysis places Myp2p in the myosin-II family. The Myp2p sequence contains well-conserved ATP- and actin-binding motifs, as well as two IQ motifs. However, the tail sequence is unusual, since it is predicted to form two long coiled-coils separated by a stretch of sequence containing 19 prolines. Disruption of myp2+ is not lethal but under nutrient limiting conditions cells lacking myp2+ function are multiseptated, elongated, and branched, indicative of a defect in cytokinesis. The presence of salt enhances these morphological defects. Additionally, Δmyp2 cells are cold sensitive in high salt, failing to form colonies at 17°C. Thus, myp2+ is required under conditions of stress, possibly linking extracellular growth conditions to efficient cytokinesis and cell growth. GFP-Myp2p localizes to a ring in the middle of late mitotic cells, consistent with a role in cytokinesis. Additionally, we constructed double mutants of Δmyp2 with temperature-sensitive mutant strains defective in cytokinesis. We observed synthetic lethal interactions between Δmyp2 and three alleles of cdc11ts, as well as more modest synthetic interactions with cdc14ts and cdc16ts, implicating myp2+ function for efficient cytokinesis under normal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We isolated a Dictyostelium cytokinesis mutant with a defect in a novel locus called large volume sphere A (lvsA). lvsA mutants exhibit an unusual phenotype when attempting to undergo cytokinesis in suspension culture. Early in cytokinesis, they initiate furrow formation with concomitant myosin II localization at the cleavage furrow. However, the furrow is later disrupted by a bulge that forms in the middle of the cell. This bulge is bounded by furrows on both sides, which are often enriched in myosin II. The bulge can increase and decrease in size multiple times as the cell attempts to divide. Interestingly, this phenotype is similar to the cytokinesis failure of Dictyostelium clathrin heavy-chain mutants. Furthermore, both cell lines cap ConA receptors but form only a C-shaped loose cap. Unlike clathrin mutants, lvsA mutants are not defective in endocytosis or development. The LvsA protein shares several domains in common with the molecules beige and Chediak–Higashi syndrome proteins that are important for lysosomal membrane traffic. Thus, on the basis of the sequence analysis of the LvsA protein and the phenotype of the lvsA mutants, we postulate that LvsA plays an important role in a membrane-processing pathway that is essential for cytokinesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caldesmon is phosphorylated by cdc2 kinase during mitosis, resulting in the dissociation of caldesmon from microfilaments. To understand the physiological significance of phosphorylation, we generated a caldesmon mutant replacing all seven cdc2 phosphorylation sites with Ala, and examined effects of expression of the caldesmon mutant on M-phase progression. We found that microinjection of mutant caldesmon effectively blocked early cell division of Xenopus embryos. Similar, though less effective, inhibition of cytokinesis was observed with Chinese hamster ovary (CHO) cells microinjected with 7th mutant. When mutant caldesmon was introduced into CHO cells either by protein microinjection or by inducible expression, delay of M-phase entry was observed. Finally, we found that 7th mutant inhibited the disassembly of microfilaments during mitosis. Wild-type caldesmon, on the other hand, was much less potent in producing these three effects. Because mutant caldesmon did not inhibit cyclin B/cdc2 kinase activity, our results suggest that alterations in microfilament assembly caused by caldesmon phosphorylation are important for M-phase progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells contain many actin-interacting proteins, including the α-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an α-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin–dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin–dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have created a strain of Dictyostelium that is deficient for the Ca2+/calmodulin-independent MLCK-A. This strain undergoes cytokinesis less efficiently than wild type, which results in an increased frequency of multinucleate cells when grown in suspension. The MLCK-A-cells are able, however, to undergo development and to cap crosslinked surface receptors, processes that require myosin heavy chain. Phosphorylated regulatory light chain (RLC) is still present in MLCK-A-cells, indicating that Dictyostelium has one or more additional protein kinases capable of phosphorylating RLC. Concanavalin A treatment was found to induce phosphorylation of essentially all of the RLC in wild-type cells, but RLC phosphorylation levels in MLCK-A-cells are unaffected by concanavalin A. Thus MLCK-A is regulated separately from the other MLCK(s) in the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof 1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof 1 SH3 domain and counteracting its inhibitory effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Styrene is a building-block of several compounds used in a wide array of materials and products. The most important human exposure to this substance occurs in industrial settings, especially among reinforced-plastics industry workers. The effect of occupational exposure to styrene on cytogenetics biomarkers has been previously reviewed with positive association observed for chromosomal aberrations, and inconclusive data for the micronucleus assay. Some limitations were noted in those studies, including inadequate exposure assessment and poor epidemiological design. Furthermore, in earlier studies micronuclei frequency was measured with protocols not as reliable as cytokinesis-block micronucleus (CBMN) assay. Aim of the present systematic review and meta-analysis is to investigate genomic instability and DNA damage as measured by the CBMN assay in lymphocytes of subjects exposed to styrene. A total of 11 studies published between 2004 and 2012 were included in the meta-analysis encompassing 479 styrene-exposed workers and 510 controls. The quality of each study was estimated by a quality scoring system which ranked studies according to the consideration of major confounders, exposure characterization, and technical parameters. An overall increase of micronuclei frequencies was found in styrene-exposure workers when compared to referents (meta-MR 1.34; 95% CI 1.18–1.52), with significant increases achieved in six individual studies. The consistency of results in individual studies, the independence of this result from major confounding factors and from the quality of the study strengthens the reliability of risk estimates and supports the use of the CBMN assay in monitoring genetic risk in styrene workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological impact of Rho depends critically on the precise subcellular localization of its active, GTP-loaded form. This can potentially be determined by the balance between molecules that promote nucleotide exchange or GTP hydrolysis. However, how these activities may be coordinated is poorly understood. We now report a molecular pathway that achieves exactly this coordination at the epithelial zonula adherens. We identify an extramitotic activity of the centralspindlin complex, better understood as a cytokinetic regulator, which localizes to the interphase zonula adherens by interacting with the cadherin-associated protein, α-catenin. Centralspindlin recruits the RhoGEF, ECT2, to activate Rho and support junctional integrity through myosin IIA. Centralspindlin also inhibits the junctional localization of p190 B RhoGAP, which can inactivate Rho. Thus, a conserved molecular ensemble that governs Rho activation during cytokinesis is used in interphase cells to control the Rho GTPase cycle at the zonula adherens

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During acute and strenuous exercise, the enhanced formation of reactive oxygen species can induce damage to lipids, proteins, and nucleic acids. The aim of this study was to investigate the effect of an Ironman triathlon (3.8 km swim, 180 km cycle, 42 km run), as a prototype of ultra-endurance exercise, on DNA stability. As biomarkers of genomic instability, the number of micronuclei, nucleoplasmic bridges, and nuclear buds were measured within the cytokinesis-block micronucleus cytome assay in once-divided peripheral lymphocytes of 20 male triathletes. Blood samples were taken 2 days before, within 20 min after the race, and 5 and 19 days post-race. Overall, the number of micronuclei decreased (P < 0.05) after the race, remained at a low level until 5 days post-race, and declined further to 19 days post-race (P < 0.01). The frequency of nucleoplasmic bridges and nuclear buds did not change immediately after the triathlon. The number of nucleoplasmic bridge declined from 2 days pre-race to 19 days post-exercise (P < 0.05). The frequency of nuclear buds increased after the triathlon, peaking 5 days post-race (P < 0.01) and decreased to basic levels 19 days after the race (P < 0.01). The results suggest that an Ironman triathlon does not cause long-lasting DNA damage in well-trained athletes.