910 resultados para Crosshole tests
Resumo:
Objective: To reevaluate the responses of thyrotropin-releasing hormone ( TRH) stimulation test in baseline condition as well as after the administration of graded supraphysiological doses of liothyronine ( L- T-3) in normal subjects. Design: To assess various parameters related to the hypothalamic-pituitary axis and peripheral tissue responses to L- T-3 in 22 normal individuals ( median age: 30.5 years). Subjects were submitted to an intravenous TRH test at baseline condition and also to the oral administration of sequential and graded doses of L- T-3 ( 50, 100, and 200 mu g/day), each given over 3 days, at an outpatient clinic. Blood samples were obtained for thyrotropin (TSH) and prolactin (PRL) at basal and then 15, 30, and 60 minutes after the TRH injection. Effects of L- T3 administration on cholesterol, creatine kinase, retinol, ferritin, and sex hormone-binding globulin ( SHBG) were also measured at basal and after the oral administration of L- T-3. Main outcome: TRH administration resulted in an increase of 4-to 14-fold rise in serum TSH ( 8.3 +/- 2.5-fold), and in a slight rise in serum PRL concentrations ( 3.8 +/- 1.5-fold). Administration of graded doses of triiodothyronine ( T-3) resulted in a dose-dependent suppression of TSH and PRL. Basal thyroxine- binding globulin (TBG) and cholesterol levels decreased, and ferritin and SHBG increased after L- T-3 administration, while creatine kinase and retinol did not change throughout the study. There was a positive correlation between basal TSH and TSH peak response to TRH at basal condition and after each sequential L- T-3 doses. On the other hand, TSH peak response to the TRH test did not predict cholesterol, TBG, ferritin, or SHBG values. Conclusion: Using the current methods on hormone and biochemical analysis, we standardized the response of many parameters to TRH stimulation test after sequential and graded T-3 suppression test in normal subjects. Our data suggest that the evaluation of the responses of the hypothalamus-pituitary axis to TRH test as well as the impact of L- T-3 on peripheral tissues were not modified by the current methods.
Resumo:
We describe a new exact relation for large N(c) QCD for the long-distance behavior of baryon form factors in the chiral limit. This model-independent relation is used to test the consistency of the structure of several baryon models. All 4D semiclassical chiral soliton models satisfy the relation, as does the Pomarol-Wulzer holographic model of baryons as 5D Skyrmions. However, remarkably, we find that the holographic model treating baryons as instantons in the Sakai-Sugimoto model does not satisfy the relation.
Resumo:
Background: Although the Clock Drawing Test (CDT) is the second most used test in the world for the screening of dementia, there is still debate over its sensitivity specificity, application and interpretation in dementia diagnosis. This study has three main aims: to evaluate the sensitivity and specificity of the CDT in a sample composed of older adults with Alzheimer`s disease (AD) and normal controls; to compare CDT accuracy to the that of the Mini-mental State Examination (MMSE) and the Cambridge Cognitive Examination (CAMCOG), and to test whether the association of the MMSE with the CDT leads to higher or comparable accuracy as that reported for the CAMCOG. Methods: Cross-sectional assessment was carried out for 121 AD and 99 elderly controls with heterogeneous educational levels from a geriatric outpatient clinic who completed the Cambridge Examination for Mental Disorder of the Elderly (CAMDEX). The CDT was evaluated according to the Shulman, Mendez and Sunderland scales. Results: The CDT showed high sensitivity and specificity. There were significant correlations between the CDT and the MMSE (0.700-0.730; p < 0.001) and between the CDT and the CAMCOG (0.753-0.779; p < 0.001). The combination of the CDT with the MMSE improved sensitivity and specificity (SE = 89.2-90%; SP = 71.7-79.8%). Subgroup analysis indicated that for elderly people with lower education, sensitivity and specificity were both adequate and high. Conclusions: The CDT is a robust screening test when compared with the MMSE or the CAMCOG, independent of the scale used for its interpretation. The combination with the MMSE improves its performance significantly, becoming equivalent to the CAMCOG.
Resumo:
Background and Study Aim: The ability to develop a strong grip and maintain it during a judo match has become an important element for judo athletes. Therefore, the purpose of this investigation was to examine differences between measurements of maximal isometric time on judogi pull-up, and number of repetitions during dynamic judogi pull-up. Material/Methods: The sample was composed by two groups: 16 high-level judo athletes from the male Brazilian National Team and 12 male state-level judo athletes, with at least one athlete per weight category. The tests were compared through analysis of co-variance (body mass as co-variable), followed by a post-hoc test (Scheffe). Significance level was set at 5%. Results: No difference was found in the isometric test: Brazilian Team: 35 +/- 18s; Regional: 39 +/- 14s. However, the Brazilian Team performed a high number of repetitions (12 +/- 5 rep) compared to regional group (9 +/- 4 rep) during the dynamic grip strength endurance test. Conclusions: Thus, dynamic grip strength endurance seems to be a discriminating variable between judo athletes, probably because judo combat involves many elbow extensions and flexions in order to avoid the opponent`s grip and to subdue them.
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper results of tests on 32 concrete-filled steel tubular columns under axial load are reported. The test parameters were the concrete compressive strength, the column slenderness (L/D) and the wall thickness (t). The test results were compared with predictions from the codes NBR 8800:2008 and EN 1994-1-1:2004 (EC4). The columns were 3, 5, 7 and 10 length to diameter ratios (L/D) and were tested with 30MPa, 60MPa, 80MPa and 100MPa concrete compressive strengths. The results of ultimate strength predicted by codes showed good agreement with experimental results. The results of NBR 8800 code were the most conservative and the EC4 showed the best results, in mean, but it was not conservative for usual concrete-filled short columns.
Resumo:
The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The acute toxicity of metals to Daphnia similis was determined and compared to other daphnid species to evaluate the suitability of this organism in ecotoxicology bioassays. To verify the performance D. similis in toxicity tests, we also investigated the effect of Pseudokirchneriella subcapitata at 1 x 10(5) and 1 x 10(6) cells ml(-1) on Cd and Cr acute toxicity to the cladoceran. Daphnid neonates were exposed to a range of chromium and cadmium concentrations in the absence and presence of the algal cells. Metal speciation calculations using MINEQL(+) showed that total dissolved metal concentrations in zooplankton culture corresponded to 96.2% free Cd and 100% free Cr concentrations. Initial total dissolved metal concentrations were used for 48 h-LC(50) determination. LC(50) for D. similis was 5.15 x 10(-7) mol l(-1) dissolved Cd without algal cells, whereas with 1 x 10(5) cells ml(-1), it was significantly higher (7.15 x 10(-7) mol l(-1) dissolved Cd). For Cr, the 48 h-LC(50) value of 9.17 x 10(-7) mol l(-1) obtained for the cladoceran in tests with 1 x 10(6) cells ml(-1) of P. subcapitata was also significantly higher than that obtained in tests without algal cells (5.28 x 10(-7) mol l(-1) dissolved Cr). The presence of algal cells reduced the toxicity of metals to D. similis, as observed in other studies that investigated the effects of food on metal toxicity to standard cladocerans. Comparing our results to those of literature, we observed that D. similis is as sensitive to metals as other standardized Daphnia species and may serve as a potential test species in ecotoxicological evaluations.
Resumo:
This paper aims to investigate the influence of some dissolved air flotation (DAF) process variables (specifically: the hydraulic detention time in the contact zone and the supplied dissolved air concentration) and the pH values, as pretreatment chemical variables, on the micro-bubble size distribution (BSD) in a DAF contact zone. This work was carried out in a pilot plant where bubbles were measured by an appropriate non-intrusive image acquisition system. The results show that the obtained diameter ranges were in agreement with values reported in the literature (10-100mm), quite independently of the investigated conditions. The linear average diameter varied from 20 to 30mm, or equivalently, the Sauter (d(3,2)) diameter varied from 40 to 50mm. In all investigated conditions, D(50) was between 75% and 95%. The BSD might present different profile (with a bimodal curve trend), however, when analyzing the volumetric frequency distribution (in some cases with the appearance of peaks in diameters ranging from 90-100mm). Regarding volumetric frequency analysis, all the investigated parameters can modify the BSD in DAF contact zone after the release point, thus potentially causing changes in DAF kinetics. This finding prompts further research in order to verify the effect of these BSD changes on solid particle removal efficiency by DAF.
Resumo:
Artesian confined aquifers do not need pumping energy, and water from the aquifer flows naturally at the wellhead. This study proposes correcting the method for analyzing flowing well tests presented by Jacob and Lohman (1952) by considering the head losses due to friction in the well casing. The application of the proposed correction allowed the determination of a transmissivity (T = 411 m(2)/d) and storage coefficient (S = 3 x 10(-4)) which appear to be representative for the confined Guarani Aquifer in the study area. Ignoring the correction due to head losses in the well casing, the error in transmissivity evaluation is about 18%. For the storage coefficient the error is of 5 orders of magnitude, resulting in physically unacceptable value. The effect of the proposed correction on the calculated radius of the cone of depression and corresponding well interference is also discussed.
Resumo:
Chloride migration tests are used to measure the concrete capacity to inhibit chloride attack. Many researchers carry out this test in a slice of concrete extracted from the central part of cylindrical specimens, discarding about 75% of the concrete used to mold the specimens. This fact generated the question: would it be possible to extract more slices from a same specimen without losing the confidence in the results? The main purpose of this work is to answer this question. Moreover, another aim of this study was to show the difference of chloride penetration between finished faces and the formwork surfaces of concrete beams and slabs. The results indicated that it is possible to use more slices of a single specimen for a chloride migration test. Moreover, it was demonstrated that there is a significant difference of chloride penetration between the finished surface and the formwork surface of the specimens. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/E(i) (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, E(r)/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/delta(max) (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - delta) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/E(i), from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, A(c), and lower than 5% in the ratio H/E(r). However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/E(i), the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio delta(e)/delta(max), where delta(e) is the point corresponding to zero load of a straight line with slope S from the point (P(max), delta(max)), varied less than 5% with the ratio E/E(i). Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon`s equation, did not reveal the necessity of correction with the ratio E/E(i). The most affected parameter in the indentation curve, as a consequence of the indentation deformation, was the ratio between the residual indentation depth after complete unloading and the maximum indenter displacement, delta(r)/delta(max) (up to 26%), but this variation did not significantly decrease the capability to estimate hardness and elastic modulus based on the ratio of the residual indentation depth to maximum indentation depth, h(r)/h(max). In general, the results confirm the convenience of the use of the reduced modulus in the spherical instrumented indentation tests.
Resumo:
The micro-scale abrasive wear test by rotative ball has gained large acceptance in universities and research centers, being widely used in studies on the abrasive wear of materials. Two wear modes are usually observed in this type of test: ""rolling abrasion"" results when the abrasive particles roll on the surface of the tested specimen, while ""grooving abrasion"" is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Several works on the friction coefficient during abrasive wear tests are available in the literature, but only a few were dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. Additionally, recent works have identified that results may also be affected by the change in contact pressure that occurs when tests are conducted with constant applied force. Thus, the purpose of this work is to study the relationship between friction coefficient and abrasive wear modes in ball-cratering wear tests conducted at ""constant normal force"" and ""constant pressure"". Micro-scale abrasive wear tests were conducted with a ball of AISI52100 steel and a specimen of AISIH10 tool steel. The abrasive slurry was prepared with black silicon carbide (SiC) particles (average particle size of 3 mu m) and distilled water. Two constant normal force values and two constant pressure values were selected for the tests. The tangential and normal loads were monitored throughout the tests and their ratio was calculated to provide an indication of the friction coefficient. In all cases, optical microscopy analysis of the worn craters revelated only the presence of grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results have also shown that: (i) for the selected values of constant normal force and constant pressure, the friction coefficient presents, approximately, the same range of values and (ii) loading conditions play an important role on the occurrence of rolling abrasion or grooving abrasion and, consequently, on the average value and scatter of the friction coefficient in micro-abrasive wear tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents first material tests on HDPE and PVC, and subsequently impact tests on plates made of the same materials. Finally, numerical simulations of the plate impact tests are compared with the experimental results. A rather comprehensive series of mechanical material tests were performed to disclose the behaviour of PVC and HDPE in tension and compression. Quasi-static tests were carried out at three rates in compression and two in tension. Digital image correlation. DIC, was used to measure the in-plane strains, revealing true stress-strain curves and allowing to analyze strain-rate sensitivity and isotropy of Poisson`s ratio. In addition, dynamic compression tests were carried out in a split-Hopkinson pressure bar. Quasi-static and dynamic tests were also performed on clamped plates made of the same PVC and HDPE materials, using an optical technique to measure the full-field out-of-plane deformations. These tests, together with the material data, were used for comparative purposes of a finite element analysis. A reasonable agreement between experimental and numerical results was achieved. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.