939 resultados para Cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h−1; P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h−1; P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01−0.04; d = 0.96−1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004−0.03; d = 0.77−3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h−1; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. −3.18 km · h−1; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h−1; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001–0.05; d = 1.31–5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar cooling systems are gaining popularity due to continuously increasing of energy costs around the world. However, there are still some factors that are hindering the installation of solar cooling systems on a larger scale. One being the cost associated with the solar collectors required to provide heat to the absorption chiller. This study demonstrates the possibility of reducing the number of solar panels in a residential solar cooling system based on evacuated tubes producing hot water at a low temperature (90 °C) and a water-ammonia absorption chiller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the first academically rigorous interrogation of the generation of performance within the global frame of the motion capture volume, this research presents a historical contextualisation and develops and tests a set of first principles through an original series of theoretically informed, practical exercises to guide those working in the emergent space of performance capture. It contributes a new understanding of the framing of performance in The Omniscient Frame, and initiates and positions performance capture as a new and distinct interdisciplinary discourse in the fields of theatre, animation, performance studies and film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical time-dependent model of an active magnetic regenerator (AMR) was developed for cooling in the kilowatt range. Earlier numerical models have been mostly developed for cooling power in the 0.4 kW range. In contrast, this paper reports the applicability of magnetic refrigeration to the 50 kW range. A packed bed active magnetic regenerator was modelled and the influence of parameters such as geometry and operating parameters were studied for different geometries. The pressure drop for AMR bed length and particle diameter was also studied. High cooling power and coefficient of performance (COP) were achieved by optimization of the diameter of the magnetocaloric powder particles and operating frequency. The optimum operating conditions of the AMR for a cooling capacity of 50 kW was determined for a temperature span of 15 K. The predicted coefficient of performance (COP) was found to be ∼6, making it an attractive alternative to vapour compression systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents mathematical models to simulate coupled heat and mass transfer during convective drying of food materials using three different effective diffusivities: shrinkage dependent, temperature dependent and average of those two. Engineering simulation software COMSOL Multiphysics was utilized to simulate the model in 2D and 3D. The simulation results were compared with experimental data. It is found that the temperature dependent effective diffusivity model predicts the moisture content more accurately at the initial stage of the drying, whereas, the shrinkage dependent effective diffusivity model is better for the final stage of the drying. The model with shrinkage dependent effective diffusivity shows evaporative cooling phenomena at the initial stage of drying. This phenomenon was investigated and explained. Three dimensional temperature and moisture profiles show that even when the surface is dry, inside of the sample may still contain large amount of moisture. Therefore, drying process should be carefully dealt with otherwise microbial spoilage may start from the centre of the ‘dried’ food. A parametric investigation has been conducted after the validation of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melbourne-based manufacturer Muller Industries Australia’s new cooling system saves 80 per cent of the average water usage in commercial office buildings that use water-based cooling towers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays Solar Cooling systems are becoming popular to reduce the carbon footprint of air conditioning. The use of an absorption chiller connected to solar thermal panels is increasing, but little study has been carried out to assess the advantage of join together an absorption chiller and a desiccant wheel to remove the sensible heat and the latent heat in different ways than the current design adopted in the industry. In this work I assess the possibility of implement a desiccant wheel in a conventional solar cooling system and the possibility of recovering the heat rejected by the absorption chiller which is then used for the regeneration of the desiccant wheel. The implementation of a desiccant wheel and the recovery of the heat rejected could provide a significant energy saving when compared to traditional solar cooling system. The results assist in the practical development of a solar cooling system which simultaneously uses absorption and adsorption technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas emissions and associated global climate change are a significant and growing concern for the world community. In order to improve building energy efficiency, the use of evaporative cooling systems is attracting growing attention. Using a climate assessment tool, the potential use of direct evaporative coolers over different Australian climates is evaluated. It is found that overall, the potential use of direct evaporative cooling is very significant in Australian climates. Among all the eight capital cities across Australia, except for Darwin, the need of hybrid cooling for other cities is found to be insignificant,and is less than 5% if appropriate air circulation is provided on hot/warm days. It is also found that the potential use of evaporative cooling can be significantly influenced by a change in the applications or design parameters. In Brisbane, it is estimated that with an increase of sensible cooling load from 30 W/m2 to 40 W/m2 in the conditioned space, the requirement in hours of hybrid cooling can increase significantly, from 4.06% to 14.89%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates and compares the system performance of a solar desiccant-evaporative cooling (SDEC) system with a referenced conventional variable air volume (VAV) system for a typical office building in all 8 Australian capital cities. A simulation model of the building is developed using the whole building simulation software EnergyPlus. The performance indicators for the comparison are system coefficient of performance (COP), annual primary energy consumption, annual energy savings, and annual CO2 emissions reduction. The simulation results show that Darwin has the most apparent advantages for SDEC system applications with an annual energy savings of 557 GJ and CO2 emission reduction of 121 tonnes. The maximum system COP is 7. For other climate zones such as Canberra, Hobart and Melbourne, the SDEC system is not as energy efficient as the conventional VAV system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By a standard application of Jones's method associated with the Wiener-Hopf technique an explicit solution is obtained for the temperature distribution inside a cylindrical rod with an insulated inner core when the rod is allowed to enter into a fluid of large extent with a uniform speed, and a simple integral expression is derived for the value of the sputtering temperature of the rod at the points of entry. Numerical results under certain special circumstances are also obtained and presented in the form of a table.