991 resultados para Context-Filtering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowing when to compete and when to cooperate to maximize opportunities for equal access to activities and materials in groups is critical to children's social and cognitive development. The present study examined the individual (gender, social competence) and contextual factors (gender context) that may determine why some children are more successful than others. One hundred and fifty-six children (M age=6.5 years) were divided into 39 groups of four and videotaped while engaged in a task that required them to cooperate in order to view cartoons. Children within all groups were unfamiliar to one another. Groups varied in gender composition (all girls, all boys, or mixed-sex) and social competence (high vs. low). Group composition by gender interaction effects were found. Girls were most successful at gaining viewing time in same-sex groups, and least successful in mixed-sex groups. Conversely, boys were least successful in same-sex groups and most successful in mixed-sex groups. Similar results were also found at the group level of analysis; however, the way in which the resources were distributed differed as a function of group type. Same-sex girl groups were inequitable but efficient whereas same-sex boy groups were more equitable than mixed groups but inefficient compared to same-sex girl groups. Social competence did not influence children's behavior. The findings from the present study highlight the effect of gender context on cooperation and competition and the relevance of adopting an unfamiliar peer paradigm when investigating children's social behavior.