912 resultados para Conical Tube, Foam-filled, Protective Structures, Energy Absorption, Crashworthiness, Impact


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los accidentes con implicación de autocares en los que se producen vuelcos ponen de manifiesto la especial agresividad de los mismos, como lo confirman las estadísticas. Como medida para mejorar la seguridad de los Vehículos de Grandes Dimensiones para el Transporte de Pasajeros (V.G.D.T.P.) frente a vuelco fue aprobado por las Naciones Unidas el Reglamento Nº 66 de Ginebra. Este reglamento establece los requisitos mínimos que las estructuras de los vehículos de grandes dimensiones deben cumplir con respecto a vuelco. El reglamento 66 ha supuesto un paso adelante muy importante en relación con la seguridad de los autocares, puesto que especifica por primera vez requerimientos estructurales a este tipo de vehículos, y en general ha supuesto una mejora del vehículo . Por otro lado, a consecuencia de la obligatoriedad de instalación de cinturones de seguridad, existe una unión entre pasajeros y vehículo, pero como no se trata de una unión rígida, hay que contemplar el porcentaje de la masa de los ocupantes que influye en la absorción de energía de la estructura. Además la retención de los ocupantes con cinturones de seguridad influye en la energía a absorber por la estructura del vehículo en dos aspectos, por un lado aumenta la masa del vehículo y en el otro se incrementa la altura el centro de gravedad. Esta situación a conducido a elaborar por parte de las Naciones Unidas la revisión 01 del Reglamento 66, en el que se considera que el 50 % de la masa total de los pasajeros posee una unión rígida con la estructura del vehículo, y por lo tanto debe ser tenida en cuenta si el vehículo posee sistemas de retención. En la situación actual, con limitaciones de peso del vehículo y peso por eje, los elementos de confort, seguridad y espacio para maleteros contribuyen a aumentar el peso del vehículo. Esto unido a la dificultad de introducción de cambios radicales en la concepción actual de fabricación de este tipo de vehículos por suponer unas pérdidas importantes para los fabricantes existentes, tanto en su conocimiento del producto como en su metodología de proceso, conlleva la necesidad cada vez más agobiante de analizar y evaluar otras alternativas estructurales que sin suponer grandes revoluciones a los productos actualmente en fabricación los complementen permitiendo adaptarse a los nuevos requerimientos en seguridad. Recientes desarrollos en la relación costo-beneficio de los procesos para la producción de materiales celulares metálicos de baja densidad, tales como las espumas metálicas, los posiciona como una alternativa de especial interés para la aplicación como elementos de absorción de energía para reforzar estructuras. El relleno con espumas metálicas puede ser más eficiente en términos de optimización de peso comparado con el aumento de espesor de los perfiles estructurales, dado que la absorción de energía se produce en una fracción relativamente pequeña de los perfiles, en las denominadas rótulas plásticas. La aplicación de espumas de relleno metálicas en estructuras de vehículos se está empezando a emplear en determinadas zonas de los vehículos de turismo, siendo totalmente novedosa cualquier intento de aplicación en estructuras de autobuses y autocares. Conforme a lo expuesto, y con el objeto de resolver estos problemas, se ha elaborado el presente trabajo de tesis doctoral, cuyos objetivos son: -Desarrollar un modelo matemático, que permita simular el ensayo de vuelco, considerando la influencia de los ocupantes retenidos con cinturones de seguridad para evaluar su influencia en la absorción de energía de la estructura. -Validar el modelo matemático de vuelco de la estructura mediante ensayos de secciones representativas de la estructura del vehículo y mediante el ensayo de un vehículo completo. -Realizar un estudio de las propiedades de las espumas metálicas que permitan incorporarlas como elemento de absorción de energía en el relleno de componentes de la superestructura de autobuses y autocares. -Desarrollar un modelo matemático para evaluar el aporte del relleno de espuma metálica en la absorción de energía ante solicitaciones por flexión estática y dinámica en componentes de la superestructura de autobuses o autocares. -Realizar un programa de ensayos a flexión estáticos y dinámicos para validar el modelo matemático del aporte del relleno de espuma metálica sobre componentes de la superestructura de autobuses y autocares. . -Incorporar al modelo matemático de vuelco de la estructura, los resultados obtenidos sobre componentes con relleno de espuma metálica, para evaluar el aporte en la absorción de energía. -Validar el modelo de vuelco de la estructura del autobús o autocar con relleno de espuma metálica, mediante ensayos de secciones de carrocería. ABSTRACT Accidents involving buses in which rollovers occur reveal the special aggressiveness thereof, as the statistics prove. As a measure to improve the safety of large vehicles for the transport of passengers to rollover, Regulation 66 of Geneva was approved by the United Nations. This regulation establishes the minimum requirements that structures of large vehicles must comply with respect to rollovers. The regulation 66 has been a major step forward in relation to the safety of coaches, since it specifies structural requirements to such vehicles and has been an improvement for the vehicle. In turn, as a result of compulsory installation of safety belts, there is contact between passengers and vehicle, but as it is not a rigid connection we must contemplate the percentage of the mass of the occupants that impacts on the energy absorption of the structure. Thus, the passengers’ restraining modifies the energy to absorb by the vehicle in two different aspects: On the one hand, it increases the vehicle weight and on the other the height of the center of gravity. This circumstance has taken the United Nations to elaborate Revision 01 of Regulation 66, in which it is considered that the 50 percent of passengers’ mass has a rigid joint together with the vehicle structure and, therefore, the passengers’ mass mentioned above should be highly considered if the vehicle has seat belts. In the present situation, in which limitations in vehicle weight and weight in axles are stricter, elements of comfort, safety and space for baggage are contributing to increase the weight of the vehicle. This coupled with the difficulty of introducing radical changes in the current conception of manufacturing such vehicles pose significant losses for existing manufacturers, both in product knowledge and process methodology, entails the overwhelming need to analyze and evaluate other structural alternatives without assuming relevant modifications on the products manufactured currently allowing them to adapt to the new safety requirements. Recent developments in cost-benefit processes for the production of metallic foams of low density, such as metal foams, place them as an alternative of special interest to be used as energy absorbers to strengthen structures. The filling with metal foams can be more efficient in terms of weight optimization compared with increasing thickness of the structural beams, since the energy absorption occurs in a relatively small fraction of the beams, called plastic hinges. The application of metal filling foams in vehicle structures is beginning to be used in certain areas of passenger cars, being an innovative opportunity in structures for application in buses and coaches. According to the mentioned before, and in order to come forward with a solution, this doctoral thesis has been prepared and its objectives are: - Develop a mathematical model to simulate the rollover test, considering the influence of the occupants held with seat belts to assess their influence on energy absorption structure. - Validate the mathematical model of the structure rollover by testing representative sections of the vehicle structure and by testing a complete vehicle. - Conduct a study of the properties of metal foams as possible incorporation of energy absorbing element in the filler component of the superstructure of buses and coaches. - Elaborate a mathematical model to assess the contribution of the metal foam filling in absorbing energy for static and dynamic bending loads on the components of buses or coaches superstructure. - Conduct a static and dynamic bending test program to validate the mathematical model of contribution of metal foam filling on components of the superstructure of buses and coaches bending. - To incorporate into the mathematical model of structure rollover, the results obtained on components filled with metal foam, to evaluate the contribution to the energy absorption. - Validate the rollover model structure of the bus or coach filled with metal foam through tests of bay sections. The objectives in this thesis have been achieved successfully. The contribution calculation model with metal foam filling in the vehicle structure has revealed that the filling with metal foam is more efficient than increasing thickness of the beams, as demonstrated in the experimental validation of bay sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To compare transmitted forces through ethylene vinyl acetate (EVA) mouthguard material and the same EVA material with gas inclusions in the form of a closed cell foam. Method: EVA mouthguard materials with and without foam gas inclusions and 4 mm thick were impacted with a constant force from an impact pendulum. Various porosity levels in the foam materials were produced by 1%, 5%, and 10% by weight foaming agent. The forces transmitted through the EVA after energy absorption by the test materials were measured with a force sensor and compared. Results: Only minor non-significant differences in transmitted forces through the EVA with and without foam were shown. Conclusions: The inclusion of gas in the form of a closed cell foam in 4 mm thick EVA mouthguard materials did not improve the impact performance of the EVA mouthguard material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento Engenharia Têxtil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions) or with molecular oxygen, generating excited singlet oxygen (type II reactions). Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structures capable of absorbing large amounts of energy are of great interest, particularly for the automotive and aviation industries, to reduce tbe impact on passengers in the case of a collision. The energy absorption properties of composite materials structures can be tailored, thus making these structures an appealing option a substitute of more traditional structures in applications where energy absorption is crucial. ln this research, the influence of some parameters, which affect the energy absorption capacity of composite material tubes, was investigated. The tubes were fabricated by hand lay-up, using orthophthalic polyester resin and a plain weave E-glass fabric Test specimens were prepared and tested under compression load. The ínfluence of the following parameters on the specific energy absorption capacity of the tubes was studied: fiber configuration (0/90º or ± 45°), tube cross-section (circular or square), and processing conditions (with or without vacuum). The results indicated that circular cross-section tubes with fibers oriented at 0/90º presented the highest level of specific energy absorbed. Further, specimens from tubes fabricated under vacuum displayed higher energy absorption capacity, when compared with specimens from tubes fabricated without vacuum. Thus, it can be concluded that the fabrication process with vacuum produce composite structures with better energy absorption capacity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly dangerous situations for tractor driver is the lateral rollover in operating conditions. Several accidents, involving tractor rollover, have indeed been encountered, requiring the design of a robust Roll-Over Protective Structure (ROPS). The aim of the thesis was to evaluate tractor behaviour in the rollover phase so as to calculate the energy absorbed by the ROPS to ensure driver safety. A Mathematical Model representing the behaviour of a generic tractor during a lateral rollover, with the possibility of modifying the geometry, the inertia of the tractor and the environmental boundary conditions, is proposed. The purpose is to define a method allowing the prediction of the elasto-plastic behaviour of the subsequent impacts occurring in the rollover phase. A tyre impact model capable of analysing the influence of the wheels on the energy to be absorbed by the ROPS has been also developed. Different tractor design parameters affecting the rollover behaviour, such as mass and dimensions, have been considered. This permitted the evaluation of their influence on the amount of energy to be absorbed by the ROPS. The mathematical model was designed and calibrated with respect to the results of actual lateral upset tests carried out on a narrow-track tractor. The dynamic behaviour of the tractor and the energy absorbed by the ROPS, obtained from the actual tests, showed to match the results of the model developed. The proposed approach represents a valuable tool in understanding the dynamics (kinetic energy) and kinematics (position, velocity, angular velocity, etc.) of the tractor in the phases of lateral rollover and the factors mainly affecting the event. The prediction of the amount of energy to be absorbed in some cases of accident is possible with good accuracy. It can then help in designing protective structures or active security devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates the ultimate earthquake resistance of typical RC moment resisting frames designed accordingly to current standards, in terms of ultimate energy absorption/dissipation capacity. Shake table test of a 2/5 scale model, under several intensities of ground motion, are carried out. The loading effect of the earthquake is expressed as the total energy that the quake inputs to the structure, and the seismic resistance is interpreted as the amount of energy that the structure dissipates in terms of cumulative inelastic strain energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earth-quakes of magnitudes 4.6 and 5.2 Mw, causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earth-quake by means of a seismic index Iv that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from Iv=1 (collapse) to about Iv=0.5 (moderate/severe damage)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connecticut Department of Transportation, Bureau of Planning and Research, Wethersfield

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Safety Bureau, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connecticut Department of Transportation, Wethersfield

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.