961 resultados para Conceptual-semantic relations
Resumo:
As a model for knowledge description and formalization, ontologies are widely used to represent user profiles in personalized web information gathering. However, when representing user profiles, many models have utilized only knowledge from either a global knowledge base or a user local information. In this paper, a personalized ontology model is proposed for knowledge representation and reasoning over user profiles. This model learns ontological user profiles from both a world knowledge base and user local instance repositories. The ontology model is evaluated by comparing it against benchmark models in web information gathering. The results show that this ontology model is successful.
Resumo:
Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.
Resumo:
More and more traditional manufacturing companies form or join inter-organizational networks to bundle their physical products with related services to offer superior value propositions to their customers. Some of these product-related services can be digitized completely and thus fully delivered electronically. Other services require the physical integration of external factors, but can still be coordinated electronically. In both cases companies and consumers face the problem of discovering appropriate product-related service offerings in the network or market. Based on ideas from the web service discovery discipline we propose a meet-in-the-middle approach between heavy-weight semantic technologies and simple boolean search to address this issue. Our approach is able to consider semantic relations in service descriptions and queries and thus delivers better results than syntax-based search. However – unlike most semantic approaches – it does not require the use of any formal language for semantic markup and thus requires less resources and skills for both service providers and consumers. To fully realize the potentials of the proposed approach a domain ontology is needed. In this research-in-progress paper we construct such an ontology for the domain of product-service bundles through analysis and synthesis of related work on service description. This will serve as an anchor for future research to iteratively improve and evaluate the ontology through collaborative design efforts and practical application.
Resumo:
The study focuses on picture captions: their grammar and interplay with photographs and their position as semi-independent elements of the news stories. The research was conducted in the framework of critical discourse analysis, social semiotic visual theory and fennistic syntactical research. The data consist of 441 press photographs, 1,815 captions and a number of news items from Finnish dailies. The generic structure potential of the caption includes the caption headline, the caption proper, i.e. the verbalization of the picture content, and the frame. In the data, 41 per cent of the captions have a headline, and 44 per cent contain a caption proper. Characteristic of the caption proper is omission of the finite verb and the use of the present tense, both of which have decreased in Finnish papers during the 20th century. The caption proper is typically a main clause, and both subordinate clauses and participal phrases occur mostly in the frame. While comparing caption variants attached to the same pictures, the processes and their participants proved to be identified considerably identically, following the news agency captions. Instead, the reader?s interpretations of a picture could be directed by framing it in different ways. For example, the caption may focus on the only person depicted, deal with a whole group, or give an abstract account of the situation. The caption is a paratext, a typographically marked, semi-independent element of a news story. Between the headline and the caption, four semantic relations have been identified. The caption may be a paraphrase of the headline, or a close-up illustrating an abstract headline with a concrete example. If the name of the person depicted is their only common factor, the relation between the caption and the headline is additive. A specifying caption will give more details than the headline. The caption may complete, repeat, or summarize the body copy. Naturally, most captions completing the story verbalize the content of the picture. As the caption is often based on the story, it may even repeat the body copy verbatim. The summarizing function is probably becoming increasingly important, as most Finnish newspapers have abandoned the use of a separate standfirst.
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
FinnWordNet is a WordNet for Finnish that conforms to the framework given in Fellbaum (1998) and Vossen (ed.) (1998). FinnWordNet is open source and currently contains 117,000 synsets. A classic WordNet consists of synsets, or sets of partial synonyms whose shared meaning is described and exemplified by a gloss, a common part of speech and a hyperonym. Synsets in a WordNet are arranged in hierarchical partial orderings according to semantic relations like hyponymy/hyperonymy. Together the gloss, part of speech and hyperonym fix the meaning of a word and constrain the possible translations of a word in a given synset. The Finnish group has opted for translating Princeton WordNet 3.0 synsets wholesale into Finnish by professional translators, because the translation process can be controlled with regard to quality, coverage, cost and speed of translation. The project was financed by FIN-CLARIN at the University of Helsinki. According to our preliminary evaluation, the translation process was diligent and the quality is on a par with the original Princeton WordNet.
Resumo:
Aplicações cientes de contexto precisam de mecanismos para recuperar informações sobre o seu contexto de execução. Com base no contexto atual, tais aplicações são capazes de se autoadaptar para fornecer informações e serviços adequados aos seus usuários. A abordagem comum para infraestruturas de apoio às aplicações sensíveis ao contexto fornece serviços para a descoberta de recursos através da utilização de pares
Resumo:
O objetivo deste trabalho é estudar a melancolia em duas vias: uma primeira via que chamaremos histórico-investigativa e que estudará esse conceito na filosofia antiga (Aristóteles) que carrega o legado direto da medicina hipocrática, e estudará ainda a trajetória da melancolia na psiquiatria moderna. Em outras palavras, estudar a forma como a melancolia foi construida como uma afecção do corpo nesses dois momentos históricos fundamentais do termo. Uma segunda via analisará o papel fundamental da construção do conceito de melancolia no interior e ao longo da obra de Freud, tanto na sua função de delimitação de um campo propriamente psicanalítico de reflexão sobre essa doença, como nas suas relações de vizinhança conceitual (onde estão envolvidos alguns dos conceitos mais fundamentais da obra freudiana)
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.
Resumo:
Perception is linked to action via two routes: a direct route based on affordance information in the environment and an indirect route based on semantic knowledge about objects. The present study explored the factors modulating the recruitment of the two routes, in particular which factors affecting the selection of paired objects. In Experiment 1, we presented real objects among semantically related or unrelated distracters. Participants had to select two objects that can interact. The presence of distracters affected selection times, but not the semantic relations of the objects with the distracters. Furthermore, participants first selected the active object (e.g. teaspoon) with their right hand, followed by the passive object (e.g. mug), often with their left hand. In Experiment 2, we presented pictures of the same objects with no hand grip, congruent or incongruent hand grip. Participants had to decide whether the two objects can interact. Action decisions were faster when the presentation of the active object preceded the presentation of the passive object, and when the grip was congruent. Interestingly, participants were slower when the objects were semantically but not functionally related; this effect increased with congruently gripped objects. Our data showed that action decisions in the presence of strong affordance cues (real objects, pictures of congruently gripped objects) relied on sensory-motor representation, supporting the direct route from perception-to-action that bypasses semantic knowledge. However, in the case of weak affordance cues (pictures), semantic information interfered with action decisions, indicating that semantic knowledge impacts action decisions. The data support the dual-route account from perception-to-action.
Resumo:
Observational data encodes values of properties associated with a feature of interest, estimated by a specified procedure. For water the properties are physical parameters like level, volume, flow and pressure, and concentrations and counts of chemicals, substances and organisms. Water property vocabularies have been assembled at project, agency and jurisdictional level. Organizations such as EPA, USGS, CEH, GA and BoM maintain vocabularies for internal use, and may make them available externally as text files. BODC and MMI have harvested many water vocabularies alongside others of interest in their domain, formalized the content using SKOS, and published them through web interfaces. Scope is highly variable both within and between vocabularies. Individual items may conflate multiple concerns (e.g. property, instrument, statistical procedure, units). There is significant duplication between vocabularies. Semantic web technologies provide the opportunity both to publish vocabularies more effectively, and achieve harmonization to support greater interoperability between datasets. - Models for vocabulary items (property, substance/taxon, process, unit-of-measure, etc) may be formalized OWL ontologies, supporting semantic relations between items in related vocabularies; - By specializing the ontology elements from SKOS concepts and properties, diverse vocabularies may be published through a common interface; - Properties from standard vocabularies (e.g. OWL, SKOS, PROV-O and VAEM) support mappings between vocabularies having a similar scope - Existing items from various sources may be assembled into new virtual vocabularies However, there are a number of challenges: - use of standard properties such as sameAs/exactMatch/equivalentClass require reasoning support; - items have been conceptualised as both classes and individuals, complicating the mapping mechanics; - re-use of items across vocabularies may conflict with expectations concerning URI patterns; - versioning complicates cross-references and re-use. This presentation will discuss ways to harness semantic web technologies to publish harmonized vocabularies, and will summarise how many of the challenges may be addressed.
Resumo:
This paper presents a proposal for the semantic treatment of ambiguous homographic forms in Brazilian Portuguese, and to offer linguistic strategies for its computational implementation in Systems of Natural Language Processing (SNLP). Pustejovsky's Generative Lexicon was used as a theoretical model. From this model, the Qualia Structure - QS (and the Formal, Telic, Agentive and Constitutive roles) was selected as one of the linguistic and semantic expedients for the achievement of disambiguation of homonym forms. So that analyzed and treated data could be manipulated, we elaborated a Lexical Knowledge Base (LKB) where lexical items are correlated and interconnected by different kinds of semantic relations in the QS and ontological information.
Resumo:
This paper carries out a descriptive study on Portuguese adjectives. Our aim is to describe the semantics of the legal domain adjectives in order to construct an ontology which may improve Information Retrieval Systems. For this, we present an approach based on valency and semantic relations. The ontology proposed here is a first step aiming to build a legal ontology based on top-level concepts. © AEPIA.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)