915 resultados para Concentration quenching


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic light scattering (DLS), time-resolved fluorescence quenching (TRFQ), and isothermal titration microcalorimetry have been used to show that, in dilute solution, low molecular weight poly(ethylene glycol) (PEG, M-w = 12 kDa) interacts with the nonionic surfactant octaethylene glycol n-dodecyl monoether, C12E8, to form a complex. Whereas the relaxation time distributions for the binary C12E8/water and PEG/water systems are unimodal, in the ternary mixtures they may be either uni- or bimodal depending on the relative concentrations of the components. At low concentrations of PEG or surfactant, the components of the relaxation time distribution are unresolvable, but the distribution becomes bimodal at higher concentrations of either polymer or surfactant. For the ternary system in excess surfactant, we ascribe, on the basis of the changes in apparent hydrodynamic radii and the scattered intensities, the fast mode to a single micelle, the surface of which is associated with the polymer and the slow mode to a similar complex but containing two or three micelles per PEG chain. Titration microcalorimetry results show that the interaction between C12E8, and PEG is exothermic and about 1 kJ mol(-1) at concentrations higher than the CMC of C12E8. The aggregation number, obtained by TRFQ, is roughly constant when either the PEG or the C12E8 concentration is increased at a given concentration of the second component, owing to the increasing amount of surfactant micelles inside the complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the effect of Ag concentration on the thermal behavior of the Cu-10 mass% Al and Cu-11 mass% Al alloys with additions of 4, 6, 8 and 10 mass% Ag was studied using differential scanning calorimetry (DSC), in situ X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that for the Cu-10 mass% Al alloy Ag addition induce the beta'(1) phase formation and for the Cu-11 mass% Al alloy these additions increase the amount of martensite formed on quenching and decrease the stability range of this phase on heating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic light scattering has been used to investigate ternary aqueous solutions of n-dodecyl octaoxyethylene glycol monoetber (C12E8) with high molar mass poly(ethylene oxide) (PEO). The measurements were made at 20 °C, always below the cloud point temperature (Tc) of the mixed solutions. The relaxation time distributions are bimodal at higher PEO and surfactant concentrations, owing to the preacute of free surfactant micelles, which coexist with the slower component, representing the polymer coil/micellar cluster comptex. As the surfactant concentration is increased, the apparent hydrodynamic radius (RH) of the coil becomes progressively larger. It is suggested that the complex structure consists of clusters of micelles sited within the polymer coil, as previously concluded for the PEO-C12E8-water system. However. C12E8 interacts less strongly than C12E8 with PEO; at low concentrations of surfactant the complex does not contribute significantly to the total scattered intensity. The perturbation of the PEO coil radius with C12E8 is also smaller than that in the C12E8 system. The addition of PEO strongly decreases the clouding temperature of the system, as previously observed for C12E8/PEO mixtures in solution Addition of PEO up to 0.2% to C12E8 (10 wt %) solutions doss not alter the aggregation number (Nagg) of the micelles probably because the surfactant monomers are equally partitioned as bound and unbound micelles. The critical micelle concentration (cmc), obtained from the I1/I3 ratio (a measure of the dependence of the vibronic band intensities on the pyrene probe environment), does not change when PEO is added, suggesting that for neutral polymer/surfactant systems the trends in Nagg and the cmc do not unambiguously reflect the strength of interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inactivation of inward-rectifying K+ channels (IK,in) by a rise in cytosolic free [Ca2+] ([Ca2+]i) is a key event leading to solute loss from guard cells and stomatal closure. However, [Ca2+]i action on IK,in has never been quantified, nor are its origins well understood. We used membrane voltage to manipulate [Ca2+]i (A. Grabov and M.R. Blatt [1998] Proc Natl Acad Sci USA 95: 4778–4783) while recording IK,in under a voltage clamp and [Ca2+]i by Fura-2 fluorescence ratiophotometry. IK,in inactivation correlated positively with [Ca2+]i and indicated a Ki of 329 ± 31 nm with cooperative binding of four Ca2+ ions per channel. IK,in was promoted by the Ca2+ channel antagonists Gd3+ and calcicludine, both of which suppressed the [Ca2+]i rise, but the [Ca2+]i rise was unaffected by the K+ channel blocker Cs+. We also found that ryanodine, an antagonist of intracellular Ca2+ channels that mediate Ca2+-induced Ca2+ release, blocked the [Ca2+]i rise, and Mn2+ quenching of Fura-2 fluorescence showed that membrane hyperpolarization triggered divalent release from intracellular stores. These and additional results point to a high signal gain in [Ca2+]i control of IK,in and to roles for discrete Ca2+ flux pathways in feedback control of the K+ channels by membrane voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al toxicity is a major problem that limits crop productivity on acid soils. It has been suggested that Al toxicity is linked to changes in cellular Ca homeostasis and the blockage of plasma membrane Ca2+-permeable channels. BY-2 suspension-cultured cells of tobacco (Nicotiana tabacum L.) exhibit rapid cell expansion that is sensitive to Al. Therefore, the effect of Al on changes in cytoplasmic free Ca concentration ([Ca2+]cyt) was followed in BY-2 cells to assess whether Al perturbed cellular Ca homeostasis. Al exposure resulted in a prolonged reduction in [Ca2+]cyt and inhibition of growth that was similar to the effect of the Ca2+ channel blocker La3+ and the Ca2+ chelator ethyleneglycol-bis(β-aminoethyl ether)-N,N′-tetraacetic acid. The Ca2+ channel blockers verapamil and nifedipine did not induce a decrease in [Ca2+]cyt in these cells and also failed to inhibit growth. Al and La3+, but not verapamil or nifedipine, reduced the rate of Mn2+ quenching of Indo-1 fluorescence, which is consistent with the blockage of Ca2+- and Mn2+-permeable channels. These results suggest that Al may act to block Ca2+ channels at the plasma membrane of plant cells and this action may play a crucial role in the phytotoxic activity of the Al ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results on experimental and theoretical characterisation of self-pulsing in high concentration erbium doped fibre laser which is free from erbium clusters. Unlike previous models of self-pulsing accounting for pair-induced quenching (PIQ) on the clustered erbium ions, new model has been developed with accounting for statistical nature of the excitation migration and upconversion and resonance-like pumpto-signal intensity noise transfer. The obtained results are in a good agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

studies have shown that rate of propofol infusion may influence the predicted propofol concentration at the effect site (Es). The aim of this study was to evaluate the Es predicted by the Marsh pharmacokinetic model (ke0 0.26min(-1)) in loss of consciousness during fast or slow induction. the study included 28 patients randomly divided into two equal groups. In slow induction group (S), target-controlled infusion (TCI) of propofol with plasma, Marsh pharmacokinetic model (ke0 0.26min(-1)) with target concentration (Tc) at 2.0-μg.mL(-1) were administered. When the predicted propofol concentration at the effect site (Es) reached half of Es value, Es was increased to previous Es + 1μg.mL(-1), successively, until loss of consciousness. In rapid induction group (R), patients were induced with TCI of propofol with plasma (6.0μg.ml(-1)) at Es, and waited until loss of consciousness. in rapid induction group, Tc for loss of consciousness was significantly lower compared to slow induction group (1.67±0.76 and 2.50±0.56μg.mL(-1), respectively, p=0.004). the predicted propofol concentration at the effect site for loss of consciousness is different for rapid induction and slow induction, even with the same pharmacokinetic model of propofol and the same balance constant between plasma and effect site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of an early case of Shy-Drager syndrome in a 67 year-old woman patient. Autonomic failure was diagnosed by functional evaluation as well as laboratory tests. MR imaging disclosed a prominent putamina hypodensity in T2-weighted images at high field strength due to iron increased depositing in this basal ganglia. MR imaging evidences confirm Shy-Drager syndrome diagnosis, and contributes for differential diagnosis of idiopathic hypotension (pure autonomic failure) in special in SDS early cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of the use of 0.5% and 2% chlorhexidine digluconate on the immediate bond strength of a conventional adhesive system to dentin in primary teeth. METHODS: Twenty-one healthy primary molars were divided into three groups (n=7), being one control (A) and two experimental groups (B and C). After dentin exposure, in Group (A) the adhesive procedure was performed using 37% phosphoric acid gel (15 s); dentin was washed (15 s), air dried (30 s) and rehydrated with water. Groups B and C followed similar procedures but for re-hydration with 0.5% and 2% chlorhexidine, respectively, for 30 s. A resin composite block was built simulating a restoration, and the teeth were stored in distilled water at 37°C for 24 h before the microtensile bond strength test. The bond strength data were analyzed by analysis of variance. RESULTS: No statistically significant difference in bond strength was found among the tested groups (P>0.05) CONCLUSION: The 0.5% and 2% concentrations of chlorhexidine presented similar behavior and caused no adverse effects on the bond strength to dentin in primary teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption spectra of DPH at fixed concentration do not change with water content in organic solvents. It exhibits monomer bands, such as those obtained in ethanol. The absorption did not change for solutions up to 54 and 46% of water in ethanol and DMSO, respectively, for [DPH] = 5.0 × 10-6 mol L-1 at 30 °C. However, at the same experimental conditions, a gradual sharp decay of the DPH fluorescence is observed. It is proposed that water molecules below these water concentration limits act as quenchers of the excited states of DPH. Stern-Volmer quenching constants by intensities measurements are 7.4 × 10-2 (water/ethanol) and 2.6 × 10-2 L mol-1 (water/DMSO). DPH lifetime measurements in the absence and presence of water resulted in 7.1 × 10-2 L mol-1 in water/ethanol, which pointed out that the process is a dynamic quenching by water molecules. For experiments using DPH as probe, this process can affect data, leading to misunderstanding interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.