972 resultados para Computer algorithms


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A purpose of this research study was to demonstrate the practical linguistic study and evaluation of dissertations by using two examples of the latest technology, the microcomputer and optical scanner. That involved developing efficient methods for data entry plus creating computer algorithms appropriate for personal, linguistic studies. The goal was to develop a prototype investigation which demonstrated practical solutions for maximizing the linguistic potential of the dissertation data base. The mode of text entry was from a Dest PC Scan 1000 Optical Scanner. The function of the optical scanner was to copy the complete stack of educational dissertations from the Florida Atlantic University Library into an I.B.M. XT microcomputer. The optical scanner demonstrated its practical value by copying 15,900 pages of dissertation text directly into the microcomputer. A total of 199 dissertations or 72% of the entire stack of education dissertations (277) were successfully copied into the microcomputer's word processor where each dissertation was analyzed for a variety of syntax frequencies. The results of the study demonstrated the practical use of the optical scanner for data entry, the microcomputer for data and statistical analysis, and the availability of the college library as a natural setting for text studies. A supplemental benefit was the establishment of a computerized dissertation corpus which could be used for future research and study. The final step was to build a linguistic model of the differences in dissertation writing styles by creating 7 factors from 55 dependent variables through principal components factor analysis. The 7 factors (textual components) were then named and described on a hypothetical construct defined as a continuum from a conversational, interactional style to a formal, academic writing style. The 7 factors were then grouped through discriminant analysis to create discriminant functions for each of the 7 independent variables. The results indicated that a conversational, interactional writing style was associated with more recent dissertations (1972-1987), an increase in author's age, females, and the department of Curriculum and Instruction. A formal, academic writing style was associated with older dissertations (1972-1987), younger authors, males, and the department of Administration and Supervision. It was concluded that there were no significant differences in writing style due to subject matter (community college studies) compared to other subject matter. It was also concluded that there were no significant differences in writing style due to the location of dissertation origin (Florida Atlantic University, University of Central Florida, Florida International University).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current prediction or genes in the Plasmodium falciparum genome database relies upon a limited number of specially developed computer algorithms. We have re-annotated the sequence of chromosome 2 of P. falciparum by a computer-assisted manual analysis. which is described here. Of 161 newly predicted introns, we have experimentally confirmed 98. We regard 110 introns from the previously published analyses as probable, we delete 3, change 26 and add 135. We recognise 214 genes in chromosome 2. We have predicted introns in 121 genes. The increased complexity or gene structure on chromosome 2 is likely to be mirrored by the entire genome. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of mathematical methods and computer algorithms in the analysis of economic and financial data series aims to give empirical descriptions of the hidden relations between many complex or unknown variables and systems. This strategy overcomes the requirement for building models based on a set of ‘fundamental laws’, which is the paradigm for studying phenomena usual in physics and engineering. In spite of this shortcut, the fact is that financial series demonstrate to be hard to tackle, involving complex memory effects and a apparently chaotic behaviour. Several measures for describing these objects were adopted by market agents, but, due to their simplicity, they are not capable to cope with the diversity and complexity embedded in the data. Therefore, it is important to propose new measures that, on one hand, are highly interpretable by standard personal but, on the other hand, are capable of capturing a significant part of the dynamical effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increasing number of studies have sprung up in recent years seeking to identify individual inventors from patent data. Different heuristics have been suggested to use their names and other information disclosed in patent documents in order to find out “who is who” in patents. This paper contributes to this literature by setting forth a methodology to identify them using patents applied to the European Patent Office (EPO hereafter). As in the large part of this literature, we basically follow a three-steps procedure: (1) the parsing stage, aimed at reducing the noise in the inventor’s name and other fields of the patent; (2) the matching stage, where name matching algorithms are used to group possible similar names; (3) the filtering stage, where additional information and different scoring schemes are used to filter out these potential same inventors. The paper includes some figures resulting of applying the algorithms to the set of European inventors applying to the EPO for a large period of time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

S'analitzen les problemàtiques relacionades amb la presentació d'informació gràfica en temps real durant un càlcul paral·lel o col·laboratiu en un entorn distribuït, i es fa una proposta de toolkit obert que estén el llenguatge OpenGL per la seva resolució.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When underwater vehicles navigate close to the ocean floor, computer vision techniques can be applied to obtain motion estimates. A complete system to create visual mosaics of the seabed is described in this paper. Unfortunately, the accuracy of the constructed mosaic is difficult to evaluate. The use of a laboratory setup to obtain an accurate error measurement is proposed. The system consists on a robot arm carrying a downward looking camera. A pattern formed by a white background and a matrix of black dots uniformly distributed along the surveyed scene is used to find the exact image registration parameters. When the robot executes a trajectory (simulating the motion of a submersible), an image sequence is acquired by the camera. The estimated motion computed from the encoders of the robot is refined by detecting, to subpixel accuracy, the black dots of the image sequence, and computing the 2D projective transform which relates two consecutive images. The pattern is then substituted by a poster of the sea floor and the trajectory is executed again, acquiring the image sequence used to test the accuracy of the mosaicking system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis