953 resultados para Complex combinatorial problem
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.
Resumo:
The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodologies to come up with a good solution with a reasonable amount of time. The presented paper proposes a Simulated Annealing (SA) approach to determine the ERM considering an intensive use of DERs, mainly EVs. In this paper, the possibility to apply Demand Response (DR) programs to the EVs is considered. Moreover, a trip reduce DR program is implemented. The SA methodology is tested on a 32-bus distribution network with 2000 EVs, and the SA results are compared with a deterministic technique and particle swarm optimization results.
Resumo:
Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis
Resumo:
Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable
Resumo:
PRECON S.A is a manufacturing company dedicated to produce prefabricatedconcrete parts to several industries as rail transportation andagricultural industries.Recently, PRECON signed a contract with RENFE,the Spanish Nnational Rail Transportation Company to manufacturepre-stressed concrete sleepers for siding of the new railways of the highspeed train AVE. The scheduling problem associated with the manufacturingprocess of the sleepers is very complex since it involves severalconstraints and objectives. The constraints are related with productioncapacity, the quantity of available moulds, satisfying demand and otheroperational constraints. The two main objectives are related withmaximizing the usage of the manufacturing resources and minimizing themoulds movements. We developed a deterministic crowding genetic algorithmfor this multiobjective problem. The algorithm has proved to be a powerfuland flexible tool to solve the large-scale instance of this complex realscheduling problem.
Resumo:
Logistics management is increasingly being recognised by many companies to be of critical concern. The logistics function includes directly or indirectly many of the new areas for achieving or maintaining competitive advantage that companies have been forced to develop due to increasing competitive pressures. The key to achieving a competitive advantage is to manage the logistics function strategically which involves determining the most cost effective method of providing the necessary customer service levels from the many combinations of operating procedures in the areas of transportation, warehousing, order processing and information systems, production, and inventory management. In this thesis, a comprehensive distribution logistics strategic management process is formed by integrating the periodic strategic planning process with a continuous strategic issues management process. Strategic planning is used for defining the basic objectives for a company and assuring co operation and synergy between the different functions of a company while strategic issues management is used on a continuous basis in order to deal with environmental and internal turbulence. The strategic planning subprocess consists of the following main phases: (1) situational analyses, (2) defining the vision and strategic goals for the logistics function, (3) determining objectives and strategies, (4) drawing up tactical action plans, and (5) evaluating the implementation of the plans and making the needed adjustments. The aim of the strategic issues management subprocess is to continuously scan the environment and the organisation for early identification of the issues having a significant impact on the logistics function using the following steps: (1) the identification of trends, (2) assessing the impact and urgency of the identified trends, (3) assigning priorities to the issues, and (4) planning responses to the, issues. The Analytic Hierarchy Process (AHP) is a systematic procedure for structuring any problem. AHP is based on the following three principles: decomposition, comparative judgements, and synthesis of priorities. AHP starts by decomposing a complex, multicriteria problem into a hierarchy where each level consists of a few manageable elements which are then decomposed into another set of elements. The second step is to use a measurement methodology to establish priorities among the elements within each level of the hierarchy. The third step in using AHP is to synthesise the priorities of the elements to establish the overall priorities for the decision alternatives. In this thesis, decision support systems are developed for different areas of distribution logistics strategic management by applying the Analytic Hierarchy Process. The areas covered are: (1) logistics strategic issues management, (2) planning of logistic structure, (3) warehouse site selection, (4) inventory forecasting, (5) defining logistic action and development plans, (6) choosing a distribution logistics strategy, (7) analysing and selecting transport service providers, (8) defining the logistic vision and strategic goals, (9) benchmarking logistic performance, and (10) logistic service management. The thesis demonstrates the potential of AHP as a systematic and analytic approach to distribution logistics strategic management.
Resumo:
Chronic low back pain (CLBP) is a complex health problem of psychological manifestations not fully understood. Using interpretive phenomenological analysis, 11 semi-structured interviews were conducted to help understand the meaning of the lived experience of CLBP; focusing on the psychological response to pain and the role of depression, catastrophizing, fear-avoidance behavior, anxiety and somatization. Participants characterized CLBP as persistent tolerable low back pain (TLBP) interrupted by periods of intolerable low back pain (ILBP). ILBP contributed to recurring bouts of helplessness, depression, frustration with the medical system and increased fear based on the perceived consequences of anticipated recurrences, all of which were mediated by the uncertainty of such pain. During times of TLBP all participants pursued a permanent pain consciousness as they felt susceptible to experience a recurrence. As CLBP progressed, participants felt they were living with a weakness, became isolated from those without CLBP and integrated pain into their self-concept.
Resumo:
Le projet de recherche porte sur l'étude des problèmes de conception et de planification d'un réseau optique de longue distance, aussi appelé réseau de coeur (OWAN-Optical Wide Area Network en anglais). Il s'agit d'un réseau qui transporte des flots agrégés en mode commutation de circuits. Un réseau OWAN relie différents sites à l'aide de fibres optiques connectées par des commutateurs/routeurs optiques et/ou électriques. Un réseau OWAN est maillé à l'échelle d'un pays ou d’un continent et permet le transit des données à très haut débit. Dans une première partie du projet de thèse, nous nous intéressons au problème de conception de réseaux optiques agiles. Le problème d'agilité est motivé par la croissance de la demande en bande passante et par la nature dynamique du trafic. Les équipements déployés par les opérateurs de réseaux doivent disposer d'outils de configuration plus performants et plus flexibles pour gérer au mieux la complexité des connexions entre les clients et tenir compte de la nature évolutive du trafic. Souvent, le problème de conception d'un réseau consiste à prévoir la bande passante nécessaire pour écouler un trafic donné. Ici, nous cherchons en plus à choisir la meilleure configuration nodale ayant un niveau d'agilité capable de garantir une affectation optimale des ressources du réseau. Nous étudierons également deux autres types de problèmes auxquels un opérateur de réseau est confronté. Le premier problème est l'affectation de ressources du réseau. Une fois que l'architecture du réseau en termes d'équipements est choisie, la question qui reste est de savoir : comment dimensionner et optimiser cette architecture pour qu'elle rencontre le meilleur niveau possible d'agilité pour satisfaire toute la demande. La définition de la topologie de routage est un problème d'optimisation complexe. Elle consiste à définir un ensemble de chemins optiques logiques, choisir les routes physiques suivies par ces derniers, ainsi que les longueurs d'onde qu'ils utilisent, de manière à optimiser la qualité de la solution obtenue par rapport à un ensemble de métriques pour mesurer la performance du réseau. De plus, nous devons définir la meilleure stratégie de dimensionnement du réseau de façon à ce qu'elle soit adaptée à la nature dynamique du trafic. Le second problème est celui d'optimiser les coûts d'investissement en capital(CAPEX) et d'opération (OPEX) de l'architecture de transport proposée. Dans le cas du type d'architecture de dimensionnement considérée dans cette thèse, le CAPEX inclut les coûts de routage, d'installation et de mise en service de tous les équipements de type réseau installés aux extrémités des connexions et dans les noeuds intermédiaires. Les coûts d'opération OPEX correspondent à tous les frais liés à l'exploitation du réseau de transport. Étant donné la nature symétrique et le nombre exponentiel de variables dans la plupart des formulations mathématiques développées pour ces types de problèmes, nous avons particulièrement exploré des approches de résolution de type génération de colonnes et algorithme glouton qui s'adaptent bien à la résolution des grands problèmes d'optimisation. Une étude comparative de plusieurs stratégies d'allocation de ressources et d'algorithmes de résolution, sur différents jeux de données et de réseaux de transport de type OWAN démontre que le meilleur coût réseau est obtenu dans deux cas : une stratégie de dimensionnement anticipative combinée avec une méthode de résolution de type génération de colonnes dans les cas où nous autorisons/interdisons le dérangement des connexions déjà établies. Aussi, une bonne répartition de l'utilisation des ressources du réseau est observée avec les scénarios utilisant une stratégie de dimensionnement myope combinée à une approche d'allocation de ressources avec une résolution utilisant les techniques de génération de colonnes. Les résultats obtenus à l'issue de ces travaux ont également démontré que des gains considérables sont possibles pour les coûts d'investissement en capital et d'opération. En effet, une répartition intelligente et hétérogène de ressources d’un réseau sur l'ensemble des noeuds permet de réaliser une réduction substantielle des coûts du réseau par rapport à une solution d'allocation de ressources classique qui adopte une architecture homogène utilisant la même configuration nodale dans tous les noeuds. En effet, nous avons démontré qu'il est possible de réduire le nombre de commutateurs photoniques tout en satisfaisant la demande de trafic et en gardant le coût global d'allocation de ressources de réseau inchangé par rapport à l'architecture classique. Cela implique une réduction substantielle des coûts CAPEX et OPEX. Dans nos expériences de calcul, les résultats démontrent que la réduction de coûts peut atteindre jusqu'à 65% dans certaines jeux de données et de réseau.
Resumo:
L’évolution récente des commutateurs de sélection de longueurs d’onde (WSS -Wavelength Selective Switch) favorise le développement du multiplexeur optique d’insertionextraction reconfigurable (ROADM - Reconfigurable Optical Add/Drop Multiplexers) à plusieurs degrés sans orientation ni coloration, considéré comme un équipement fort prometteur pour les réseaux maillés du futur relativement au multiplexage en longueur d’onde (WDM -Wavelength Division Multiplexing ). Cependant, leur propriété de commutation asymétrique complique la question de l’acheminement et de l’attribution des longueur d’ondes (RWA - Routing andWavelength Assignment). Or la plupart des algorithmes de RWA existants ne tiennent pas compte de cette propriété d’asymétrie. L’interruption des services causée par des défauts d’équipements sur les chemins optiques (résultat provenant de la résolution du problème RWA) a pour conséquence la perte d’une grande quantité de données. Les recherches deviennent ainsi incontournables afin d’assurer la survie fonctionnelle des réseaux optiques, à savoir, le maintien des services, en particulier en cas de pannes d’équipement. La plupart des publications antérieures portaient particulièrement sur l’utilisation d’un système de protection permettant de garantir le reroutage du trafic en cas d’un défaut d’un lien. Cependant, la conception de la protection contre le défaut d’un lien ne s’avère pas toujours suffisante en termes de survie des réseaux WDM à partir de nombreux cas des autres types de pannes devenant courant de nos jours, tels que les bris d’équipements, les pannes de deux ou trois liens, etc. En outre, il y a des défis considérables pour protéger les grands réseaux optiques multidomaines composés de réseaux associés à un domaine simple, interconnectés par des liens interdomaines, où les détails topologiques internes d’un domaine ne sont généralement pas partagés à l’extérieur. La présente thèse a pour objectif de proposer des modèles d’optimisation de grande taille et des solutions aux problèmes mentionnés ci-dessus. Ces modèles-ci permettent de générer des solutions optimales ou quasi-optimales avec des écarts d’optimalité mathématiquement prouvée. Pour ce faire, nous avons recours à la technique de génération de colonnes afin de résoudre les problèmes inhérents à la programmation linéaire de grande envergure. Concernant la question de l’approvisionnement dans les réseaux optiques, nous proposons un nouveau modèle de programmation linéaire en nombres entiers (ILP - Integer Linear Programming) au problème RWA afin de maximiser le nombre de requêtes acceptées (GoS - Grade of Service). Le modèle résultant constitue celui de l’optimisation d’un ILP de grande taille, ce qui permet d’obtenir la solution exacte des instances RWA assez grandes, en supposant que tous les noeuds soient asymétriques et accompagnés d’une matrice de connectivité de commutation donnée. Ensuite, nous modifions le modèle et proposons une solution au problème RWA afin de trouver la meilleure matrice de commutation pour un nombre donné de ports et de connexions de commutation, tout en satisfaisant/maximisant la qualité d’écoulement du trafic GoS. Relativement à la protection des réseaux d’un domaine simple, nous proposons des solutions favorisant la protection contre les pannes multiples. En effet, nous développons la protection d’un réseau d’un domaine simple contre des pannes multiples, en utilisant les p-cycles de protection avec un chemin indépendant des pannes (FIPP - Failure Independent Path Protecting) et de la protection avec un chemin dépendant des pannes (FDPP - Failure Dependent Path-Protecting). Nous proposons ensuite une nouvelle formulation en termes de modèles de flots pour les p-cycles FDPP soumis à des pannes multiples. Le nouveau modèle soulève un problème de taille, qui a un nombre exponentiel de contraintes en raison de certaines contraintes d’élimination de sous-tour. Par conséquent, afin de résoudre efficacement ce problème, on examine : (i) une décomposition hiérarchique du problème auxiliaire dans le modèle de décomposition, (ii) des heuristiques pour gérer efficacement le grand nombre de contraintes. À propos de la protection dans les réseaux multidomaines, nous proposons des systèmes de protection contre les pannes d’un lien. Tout d’abord, un modèle d’optimisation est proposé pour un système de protection centralisée, en supposant que la gestion du réseau soit au courant de tous les détails des topologies physiques des domaines. Nous proposons ensuite un modèle distribué de l’optimisation de la protection dans les réseaux optiques multidomaines, une formulation beaucoup plus réaliste car elle est basée sur l’hypothèse d’une gestion de réseau distribué. Ensuite, nous ajoutons une bande pasiv sante partagée afin de réduire le coût de la protection. Plus précisément, la bande passante de chaque lien intra-domaine est partagée entre les p-cycles FIPP et les p-cycles dans une première étude, puis entre les chemins pour lien/chemin de protection dans une deuxième étude. Enfin, nous recommandons des stratégies parallèles aux solutions de grands réseaux optiques multidomaines. Les résultats de l’étude permettent d’élaborer une conception efficace d’un système de protection pour un très large réseau multidomaine (45 domaines), le plus large examiné dans la littérature, avec un système à la fois centralisé et distribué.
Resumo:
The International Labor Organization (OIT) estimates that there are around 118 million children subjected to child labor around the world. In Brazil, there are 3.5 million workers aged between 5 and 17. This exploitation practice constitutes a serious social problem, including of Public Health, since these workers are exposed to a wide range of risks, such as those related to health, physical integrity and even to life, which may cause them to become sick adults and/or interrupt their lives prematurely. Therefore, this research aims to investigate the relationship between the frequency of child labor in the age group of 10 to 13 years and some socio-economic indicators. It is a quantitative research in an ecological study whose levels of analysis are the Brazilian municipalities grouped in 161 regions, defined from socioeconomic criteria. The dependent variable of this study was the prevalence of child labor in the age group of 10 to 13 years. The independent variables were selected after a correlation between the 2010 Census of child labor in the age group of 10 to 13 years and secondary data had been conducted, adopting two main independent variables: funds from the Family Allowance Program (PBF) per 1,000 inhabitants and Funds from the Child Labor Eradication Program (PETI) per a thousand inhabitants. Initially, it was conducted a descriptive analysis of the variables of the study, then, a bivariate analysis, and the correlation matrix was built. At last, the Multiple Linear Regression stratified analysis was performed. The results of this survey indicate that public policies , like the Bolsa Familia Program Features per 1000 inhabitants and Resources Program for the Eradication of Child Labour to be allocated to municipalities with HDI < 0.697 represent a decrease in the rate of child labor ; These programs have the resources to be invested in municipalities with HDI > = 0.697 have no effect on the rate of child labor. Other adjustment variables showed significance, among these the municipal Human Development Index (IDH), years of schooling at 18 years of age, illiteracy at 15 years of age or more, employees without employment contract at 18 years of age and the Gini Index. It is understood that the child labor issue is complex. The problem is associated, although not restricted to, poverty, the social exclusion and inequality that exist in Brazil, but other factors of cultural and economic nature, as well as of organization of production, also account for its aggravation. Fighting child labor involves a wide intersectoral articulation, shared and integrated with several public policies, among them health, sports, culture, agriculture, labor and human rights, with a view to guaranteeing the integrality of the rights of children and adolescents in situation of labor and of their respective families
Resumo:
The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset
Resumo:
The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.