935 resultados para Complete Genome Sequence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living α-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1,852,442-bp sequence of an M1 strain of Streptococcus pyogenes, a Gram-positive pathogen, has been determined and contains 1,752 predicted protein-encoding genes. Approximately one-third of these genes have no identifiable function, with the remainder falling into previously characterized categories of known microbial function. Consistent with the observation that S. pyogenes is responsible for a wider variety of human disease than any other bacterial species, more than 40 putative virulence-associated genes have been identified. Additional genes have been identified that encode proteins likely associated with microbial “molecular mimicry” of host characteristics and involved in rheumatic fever or acute glomerulonephritis. The complete or partial sequence of four different bacteriophage genomes is also present, with each containing genes for one or more previously undiscovered superantigen-like proteins. These prophage-associated genes encode at least six potential virulence factors, emphasizing the importance of bacteriophages in horizontal gene transfer and a possible mechanism for generating new strains with increased pathogenic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillus amyloliquefaciens H57 is a bacterium isolated from lucerne for its ability to prevent feed spoilage. Further interest developed when ruminants fed with H57-inoculated hay showed increased weight gain and nitrogen retention relative to controls, suggesting a probiotic effect. The near complete genome of H57 is ~3.96 Mb comprising 16 contigs. Within the genome there are 3,836 protein coding genes, an estimated sixteen rRNA genes and 69 tRNA genes. H57 has the potential to synthesise four different lipopeptides and four polyketide compounds, which are known antimicrobials. This antimicrobial capacity may facilitate the observed probiotic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the genome sequence of Thermococcus superprofundus strain CDGST, a new piezophilic and hyperthermophilic member of the order Thermococcales isolated from the world’s deepest hydrothermal vents, at the Mid-Cayman Rise. The genome is consistent with a heterotrophic, anaerobic, and piezophilic lifestyle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome sequence of bovine papillomavirus 2 (BPV2) from Brazilian Amazon Region was determined using multiple-primed rolling circle amplification followed by Illumina sequencing. The genome is 7,947 bp long, with 45.9% GC content. It encodes seven early (E1, E2, E4, E5, E6, E7, and E8) and two late (L1 and L2) genes. The complete genome of a BPV2 can help in future studies since this BPV type is highly reported worldwide although the lack of complete genome sequences available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome sequence of wild-type rabies virus (RABV) isolated from a wild Brazilian hoary fox (Dusicyon sp.), the BR-Pfx1 isolate, was determined and compared with fixed RABV strains. The genome structure and organization of the BR-Pfx1 isolate were composed of 11,924 nt and included the five standard genes of rhabdoviruses. Sequences of mRNA start and stop signals for transcription were highly conserved among all structural protein genes of the BR-Pfx1 isolate. All amino acid residues in the glycoprotein (G) gene associated with pathogenicity were retained in the BR-Pfx1 isolate, while unique amino acid substitutions were found in antigenic region I of the nucleoprotein gene and III of G. These results suggest that although the standard genome structure and organization of the RABV isolate are common between the BR-Pfx1 isolate and fixed RABV strains, the unique amino acid substitutions in functional sites of the BR-Pfx1 isolate may result in different biological characteristics from fixed RABV strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, dengue fever (DF) in Brazil has been recognized as an important public health problem, and an increasing number of dengue haemorrhagic fever (DHF) cases have been reported since the introduction of dengue virus type 2 (DEN-2) into the country in 1990. In order to analyze the complete genome sequence of a DEN-2 Brazilian strain (BR64022/98), we designed primers to amplify contiguous segments of approximately 500 base pairs across the entire sequence of the viral genome. Twenty fragments amplified by reverse transcriptase-PCR were cloned, and the complete nucleotide and the deduced amino acid sequences were determined. This constitutes the first complete genetic characterization of a DEN-2 strain from Brazil. All amino acid changes differentiating strains related to the Asian/American-Asian genotype were observed in BR64022/98, indicating the Asiatic origin of the strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the complete genome sequence of the free-living bacterium Pseudomonas protegens (formerly Pseudomonas fluorescens) CHA0, a model organism used in plant-microbe interactions, biological control of phytopathogens, and bacterial genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. Conclusions This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged ≈270 million years ago and the γ subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for ≈1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete nucleotide sequence of the mitochondrial (mt) DNA molecule of the liverfluke, Fasciola hepatica (phylum Platyhelminthes, class Trematoda, family Fasciolidae), was determined, It comprises 14462 bp, contains 12 protein-encoding, 2 ribosomal and 22 transfer RNA genes, and is the second complete flatworm (and the first trematode) mitochondrial sequence to be described in detail. All of the genes are transcribed from the same strand. Of the genes typically found in mitochondrial genomes of eumetazoans, only atp8 is absent. The nad4L and nad4 genes overlap by 40 nt. Most intergenic sequences are very short. Two larger non-coding regions are present. The longer one (817 nt) is located between trnG and cox3 and consists of 8 identical tandem repeats of 85 nt, rich in G and C, followed by 1 imperfect repeat. The shorter non-coding region (187 nt) exhibits no special features and is separated from the longer region by trnG. The gene arrangement resembles that of some other trematodes including the eastern Asian Schistosoma species (and cyclophyllidean cestode species) but it is strikingly different from that of the African schistosomes, represented by Schistosoma mansoni. The genetic code is as inferred previously for flatworms. Transfer RNA genes range in length from 58 to 70 nt, their products producing characteristic 'clover leaf' structures, except for tRNA(S-VON) and tRNA(S-AGN) lacking the DHU arm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions.