858 resultados para Compact metric spaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The class of metric spaces (X,d) known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel high-dimensional index method, the BM+-tree, to support efficient processing of similarity search queries in high-dimensional spaces. The main idea of the proposed index is to improve data partitioning efficiency in a high-dimensional space by using a rotary binary hyperplane, which further partitions a subspace and can also take advantage of the twin node concept used in the M+-tree. Compared with the key dimension concept in the M+-tree, the binary hyperplane is more effective in data filtering. High space utilization is achieved by dynamically performing data reallocation between twin nodes. In addition, a post processing step is used after index building to ensure effective filtration. Experimental results using two types of real data sets illustrate a significantly improved filtering efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (X, d) be a compact metric space and f: X → X a continuous function and consider the hyperspace (K(X), H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d. Let f̄: K(X) → K (X) be defined by f̄(A) = {f(a)/a ∈ A} the natural extension of f to K(X), then the aim of this work is to study the dynamics of f when f is turbulent (erratic, respectively) and its relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with combinatorics, order theory and descriptive set theory. The first contribution is to the theory of well-quasi-orders (wqo) and better-quasi-orders (bqo). The main result is the proof of a conjecture made by Maurice Pouzet in 1978 his thèse d'état which states that any wqo whose ideal completion remainder is bqo is actually bqo. Our proof relies on new results with both a combinatorial and a topological flavour concerning maps from a front into a compact metric space. The second contribution is of a more applied nature and deals with topological spaces. We define a quasi-order on the subsets of every second countable To topological space in a way that generalises the Wadge quasi-order on the Baire space, while extending its nice properties to virtually all these topological spaces. The Wadge quasi-order of reducibility by continuous functions is wqo on Borei subsets of the Baire space, this quasi-order is however far less satisfactory for other important topological spaces such as the real line, as Hertling, Ikegami and Schlicht notably observed. Some authors have therefore studied reducibility with respect to some classes of discontinuous functions to remedy this situation. We propose instead to keep continuity but to weaken the notion of function to that of relation. Using the notion of admissible representation studied in Type-2 theory of effectivity, we define the quasi-order of reducibility by relatively continuous relations. We show that this quasi-order both refines the classical hierarchies of complexity and is wqo on the Borei subsets of virtually every second countable To space - including every (quasi-)Polish space. -- Cette thèse se situe dans les domaines de la combinatoire, de la théorie des ordres et de la théorie descriptive. La première contribution concerne la théorie des bons quasi-ordres (wqo) et des meilleurs quasi-ordres (bqo). Le résultat principal est la preuve d'une conjecture, énoncée par Pouzet en 1978 dans sa thèse d'état, qui établit que tout wqo dont l'ensemble des idéaux non principaux ordonnés par inclusion forme un bqo est alors lui-même un bqo. La preuve repose sur de nouveaux résultats, qui allient la combinatoire et la topologie, au sujet des fonctions d'un front vers un espace métrique compact. La seconde contribution de cette thèse traite de la complexité topologique dans le cadre des espaces To à base dénombrable. Dans le cas de l'espace de Baire, le quasi-ordre de Wadge est un wqo sur les sous-ensembles Boréliens qui a suscité énormément d'intérêt. Cependant cette relation de réduction par fonctions continues s'avère bien moins satisfaisante pour d'autres espaces d'importance tels que la droite réelle, comme l'ont fait notamment remarquer Hertling, Schlicht et Ikegami. Nous proposons de conserver la continuité et d'affaiblir la notion de fonction pour celle de relation. Pour ce faire, nous utilisons la notion de représentation admissible étudiée en « Type-2 theory of effectivity » initiée par Weihrauch. Nous introduisons alors le quasi-ordre de réduction par relations relativement continues et montrons que celui-ci à la fois raffine les hiérarchies classiques de complexité topologique et forme un wqo sur les sous-ensembles Boréliens de chaque espace quasi-Polonais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study on chaos and fractals in general topological spaces. Chaos theory originated with the work of Edward Lorenz. The phenomenon which changes order into disorder is known as chaos. Theory of fractals has its origin with the frame work of Benoit Mandelbrot in 1977. Fractals are irregular objects. In this study different properties of topological entropy in chaos spaces are studied, which also include hyper spaces. Topological entropy is a measures to determine the complexity of the space, and compare different chaos spaces. The concept of fractals can’t be extended to general topological space fast it involves Hausdorff dimensions. The relations between hausdorff dimension and packing dimension. Regular sets in Metric spaces using packing measures, regular sets were defined in IR” using Hausdorff measures. In this study some properties of self similar sets and partial self similar sets. We can associate a directed graph to each partial selfsimilar set. Dimension properties of partial self similar sets are studied using this graph. Introduce superself similar sets as a generalization of self similar sets and also prove that chaotic self similar self are dense in hyper space. The study concludes some relationships between different kinds of dimension and fractals. By defining regular sets through packing dimension in the same way as regular sets defined by K. Falconer through Hausdorff dimension, and different properties of regular sets also.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we introduce the concept of dynamic Morse decomposition for an action of a semigroup of homeomorphisms. Conley has shown in [5, Sec. 7] that the concepts of Morse decomposition and dynamic Morse decompositions are equivalent for flows in metric spaces. Here, we show that a Morse decomposition for an action of a semigroup of homeomorphisms of a compact topological space is a dynamic Morse decomposition. We also define Morse decompositions and dynamic Morse decompositions for control systems on manifolds. Under certain condition, we show that the concept of dynamic Morse decomposition for control system is equivalent to the concept of Morse decomposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Topics include: Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon- Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration, Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon-Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently two new types of completeness in metric spaces, called Bourbaki-completeness and cofinal Bourbaki-completeness, have been introduced in [7]. The purpose of this note is to analyze these completeness properties in the general context of uniform spaces. More precisely, we are interested in how they are related with uniform paracompactness properties, as well as with some kind of uniform boundedness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).