969 resultados para Coal-fired power plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change conference was hold in Copenhagen in 2009, global warming became the worldwide focus once again. China as a developing country has paid more attention for this environmental problem. In China, a large part of carbon dioxide is emitted to the atmosphere from combustion of fossil fuels in power plants. How to control emission of the greenhouse gas into atmosphere is becoming an urgent concern. Among numerous methods, CO2 capture is the hope to limit the amount of CO2 emitted into the air. The well-established method for CO2 capture is to remove CO2 by absorption into solutions in conventional equipment. Absorbents used for CO2 and H2S capture are important choice for CO2 capture technology. It is related to the cost and efficiency of plant directly and is essential to investigate the proposed CO2 and H2S absorbents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant’s ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator.

In order to perform the assessment from the perspective of the facility owners (e.g., electric power utilities, independent power producers), an optimal design and operating strategy of the hybrid system is determined for both the amine storage and partial capture configurations. A linear optimization model is developed to determine the optimal component sizes for the hybrid system and capture rates while meeting constraints on annual average emission targets of CO2, and variability of the combined power output. Results indicate that there are economic benefits of flexible operation relative to conventional CCS, and demonstrate that the hybrid system could operate as an energy storage system: providing an effective pathway for wind power integration as well as a mechanism to mute the variability of intermittent wind power.

In order to assess the performance of the hybrid system from the perspective of the system operator, a modified Unit Commitment/ Economic Dispatch model is built to consider and represent the techno-economic aspects of operation of the hybrid system within a power grid. The hybrid system is found to be effective in helping the power system meet an average CO2 emissions limit equivalent to the CO2 emission rate of a state-of-the-art natural gas plant, and to reduce power system operation costs and number of instances and magnitude of energy and reserve scarcity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, there is much anxiety regarding the security of energy supplies; for example, the UK and other European States are set to become increasingly dependant upon imports of natural gas from states with which political relations are often strained. These uncertainties are felt acutely by the electricity generating sector, which is facing major challenges regarding the choice of fuel mix in the years ahead. Nuclear energy may provide an alternative; however, in the UK, progress in replacing the first generation reactors is exceedingly slow. A number of operators are looking to coal as a means of plugging the energy gap. However, in the light of ever more stringent legal controls on emissions, this step cannot be taken without the adoption of sophisticated pollution abatement technology. This article examines the role which legal concepts such as Best Available Techniques (BAT) must play in bringing about these changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued June 1978.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: On June 22, 2001, the groundwork was laid for the construction of new electric generation in the state of Illinois when the Illinois Resource Development and Energy Act was signed. Overwhelmingly approved by the Illinois General Assembly, this broad-based $3.5 billion package is designed to reinvigorate the Illinois coal industry and to strengthen the state's ability to provide electricity to its citizens. The legislation (Public Act 92-0012) provides tax incentives and financial assistance to builders of new electric plants generating in excess of 400 megawatts that create Illinois coal-mining jobs, new and expanding coal mines, and natural gas-fired baseload electric plants with a capacity of 1,000 megawatts. The legislation also directs the the Illinois Environmental Protection Agency to explore the need for a state-level, multi-pollutant strategy to reduce emissions from coal-fired electric generating plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naturally occurring radioactive materials (NORM) under certain conditions can reach hazardous radiological levels contributing to an additional exposure dose to ionizing radiation. Most environmental concerns are associated with uranium mining and milling sites, but the same concerns should be addressed to natural near surface occurrences of uranium as well as man-made sources such as technologically enhanced naturally occurring radioactive materials (TENORM) resulting from phosphates industry, ceramic industry and energy production activities, in particular from coal-fired power plants which is one of the major sources of increased exposure to man from enhanced naturally occurring materials. This work describes the methodology developed to assess the environmental radiation by in situ gamma spectrometry in the vicinity of a Portuguese coal fired power plant. The current investigation is part of a research project that is undergoing in the vicinity of Sines Coal-Fired Power Plant (south of Portugal) until the end of 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal ashes produced in coal-fired power plant could be converted into zeolites and can be used as low-cost adsorbents for the treatment of effluents contaminated with high levels of toxic metals. The capacity of synthetic zeolites for the removal of cadmium, zinc and copper ions from aqueous solutions has been investigated under different operating conditions. Zeolite from bottom chimney showed higher removal efficiency for metals ions than zeolite from feed hopper and mixing mill. The results indicated that the treated bottom ash could be applied in environmental technology as an immobilizer of pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lahti Energia Oy:n kivihiiltä polttavan Kymijärvi I voimalaitoksen vuotuiset käyttötunnit ovat vähentyneet. Syy vähennykseen on ollut uuden kaasutusvoimalaitoksen käyttöönotto vuonna 2012, jolloin vanhan voimalaitoksen käytölle ei ole ollut tarvetta kesäkuukausina. Seisonta-aikana voimalaitoksen höyryvoimaprosessi tulee säilöä. Säilönnällä tarkoitetaan toimenpiteitä, joilla estetään korroosio-olosuhteiden syntyminen voimalaitoksen laitteisiin. Säilöntätavasta riippuen estetään joko hapen tai kosteuden esiintyminen. Tässä diplomityössä tutkitaan eri säilöntämenetelmien ominaisuuksia tavoitteena löytää sopivin vaihtoehto vanhalle kivihiilivoimalaitokselle. Työssä perehdytään teorian kautta kolmeen menetelmään voimalaitoksen kattilan säilönnässä. Typpi- ja märkäsäilönnässä estetään hapen ja kuivailmasäilönnässä kosteuden esiintyminen. Työssä on myös tutkittu kattilan säilöntämenetelmien vaikutuksia muihin laitteistoihin ja järjestelmiin. Tuloksien perusteella voidaan todeta, että kuivailmasäilöntä on toimivin ratkaisu voimalaitoksen viimeisille käyttövuosille. Voimalaitoksen jäädessä varavoimalaitokseksi on typpisäilöntä kustannustehokkain vaihtoehto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.