998 resultados para Coal particle
Resumo:
An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.
Resumo:
To develop low-pollution burners, the effect of a coal concentrator on NO formation in swirling coal combustion is studied using both numerical simulation and experiments. The isothermal gas-particle two-phase velocities and particle concentration in a cold model of swirl burners with and without coal concentrators were measured using the phase Doppler particle anemometer (PDPA). A full two-fluid model of reacting gas-particle flows and coal combustion with an algebraic unified second-order moment (AUSM) turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion and NO formation with different coal concentrators. The results give the turbulent kinetic energy, particle concentration, temperature and NO concentration in cases of with and without coal concentrators. The predicted results for cold two-phase flows are in good agreement with the PDPA measurement results, showing that the coal concentrator increases the turbulence and particle concentration in the recirculation zone. The combustion modeling results indicate that although the coal concentrator increases the turbulence and combustion temperature, but still can remarkably reduce the NO formation due to creating high coal concentration in the recirculation zone.
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Resumo:
A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment (AUSM) turbulence-chemistry model is used to simulate Beijing coal combustion and NOx formation. The sub-models are the k-epsilon-kp two-phase turbulence model, the EBU-Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The blocking effect on NOx formation is discussed. In addition, the chemical equilibrium analysis is used to predict NOx concentration at different temperature. Results of CID simulation and chemical equilibrium analysis show that, optimizing air dynamic parameters can delay the NOx formation and decrease NOx emission, but it is effective only in a restricted range. In order to decrease NOx emission near to zero, the re-burning or other chemical methods must be used.
Resumo:
A hot particle jet is induced as a laser pulse from a free oscillated Nd:YAG laser focused on a coal target. The particle jet successfully initiates combustion in a premixed combustible gas consisting of hydrogen, oxygen, and air. The experiment reveals that the ionization of the particle jet is enhanced during the laser pulse. This characteristic is attributed to the electron cascade process and the ionization of the particles or molecules of the target. The initial free electrons, which are ablated from the coal target, are accelerated by the laser pulse through the inverse Bremsstrahlung process and then collide with the neutrals in the jet, causing the latter to be ionized.
Resumo:
In this paper, the first Chinese microgravity (μ-g) experimental study on coal combustion was introduced. An experimental system used to study the ignition process of single coal particles was built up, complying with the requirements of the 3.5 s drop tower in the National Microgravity Laboratory of China (NMLC). High volatile bituminous and lignite coal particles with diameter of 1.5 and 2.0 mm were tested. The ignition and combustion process was recorded by a color CCD and the particle surface temperature before and at the ignition was determined by the RGB colorimetric method. Comparative experiments were conducted at normal gravity (1-g). The experiments revealed that at different gravity levels, the ignition of all tested coal particles commenced in homogeneous phase, while the shape, structure, brightness and development of the flames, as well as the volatile matter release during the ignition process are different. At μ-g, the part of volatile was released as a jet, while such a phenomenon was barely observed at 1-g. Also, after ignition, flames were more spherical, thicker, laminated and dimmer at μ-g. It was confirmed that ignition temperature decreased as the particle size or volatile content increased. However, contradicted to existing experimental results, provided other experimental conditions except gravity level were the same, ignition temperature of coal particles was about 50–80 K lower at μ-g than that at 1-g.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.
Resumo:
In a slagging combustor or furnace, the high combustion temperature makes the molten slag layer cover the wall and capture the particles. If these particles contain combustible matter, they will continue to burn on the running slag. As a result, the total amount of ash deposition will be much greater than that in dry-wall combustors and the total heat flux through the deposition surface will change greatly. Considering the limitations of existing simulation methods for slagging combustion, this paper introduces a new wall burning model and slag flow model from the analysis; of particle deposition phenomena. Combined with a conventional combustion simulation program, the total computational frame is introduced. From comparisons of simulation results from several kinds of methods with experimental data, the conclusion is drawn that the conventional simulation methods are not very suitable for slagging combustion and the wall burning mechanism should be considered more thoroughly.
Resumo:
In this study, the Euler-Euler (E-E) and Euler-Lagrange (E-L) models designed for the same chemical mechanism of heterogeneous reactions were used to predict the performance of a typical sudden-expanding coal combustor. The results showed that the current E-E model underestimated the coal burnout rate because the particle temperature fluctuation on char combustion is not adequately considered. A comparison of the E-E and E-L simulations showed the underestimation of heterogeneous chemical reaction rates by the E-E model. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented.
Resumo:
Two respirable coal fly ash samples ((LESSTHEQ) 3(mu)m), one from a pressurized fluidized-bed combustion miniplant and one from a conventional combustion power plant, were investigated for physical properties, chemical composition and biological activity. Electron microscopy illustrated irregularity in fluidized-bed combustion fly ash and sphericity in conventional combustion fly ash. Elemental analysis of these samples showed differences in trace elements. Both fly ash samples were toxic in rabbit alveolar macrophage and Chinese hamster ovary cell systems in vitro. The macrophages were more sensitive to toxicity of fly ash than the ovary cells. For measuring the cytotoxicity of fly ash, the most sensitive parameters were adenosine triphosphate in the alveolar macrophage system and viability index in the hamster ovary system. Intact fluidized-bed combustion fly-ash particles showed mutagenicity only in strains TA98 and TA1538 without metabolic activation in the Ames Salmonella assay. No mutagenicity was detected in bioassay of conventional combustion fly ash particles. Solvent extraction yielded more mass from fluidized-bed combustion fly ash than from conventional combustion fly ash. The extracts of fluidized-bed combustion fly ash showed higher mutagenic activity than conventional combustion fly ash. These samples contained direct-acting, frameshift mutagens.^ Fly ash samples collected from the same fluidized-bed source by cyclones, a fabric filter, and a electrostatic precipitator at various temperatures were compared for particle size, toxicity, and mutagenicity. Results demonstrated that the biological activity of coal fly ash were affected by the collection site, device, and temperature.^ Coal fly ash vapor-coated with 1-nitropyrene was developed as a model system to study the bioavailability and recovery of nitroaromatic compounds in fly ash. The effects of vapor deposition on toxicity and mutagenicity of fly ash were examined. The nitropyrene coating did not significantly alter the ash's cytotoxicity. Nitropyrene was bioavailable in the biological media, and a significant percentage was not recovered after the coated fly ash was cultured with alveolar macrophages. 1-Nitropyrene loss increased as the number of macrophages was increased, suggesting that the macrophages are capable of metabolizing or binding 1-nitropyrene present in coal fly ash. ^
Resumo:
The moisture content of the coarse coking coal product from the centrifuges of preparation plants was investigated to evaluate the contribution of three types of water: that held internally in pores, that in fillets at points of contacts between the particles, and the moisture covering the surface. A standardised laboratory centrifuge test was used to measure the total non-centrifugable moisture (NCM) content and also the quantity held in internal pores, called NCMi. The fillet moisture NCMf was estimated by means of a formulation which relies on experimentally measured holdup volumes, supplemented by a physical model. The surface moisture NCMs could then be derived by difference. The NCMf, which depends on the body force, the particle size and the surface tension and contact angle of the liquid, ranges from effectively zero for large particles to 10% for fines. The surface moisture NCMs is of the order of 0.5% for high rank coals and increases to 4.5% for lower rank coals. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
It has been observed in several Jameson cell installation where the source for flotation feed is deslime screens, that the recovery of coal particles greater than 0.5 mm is not as great as that of finer material. Consequently, a research project was undertaken at a CHPP in the Bowen Basin Queensland to assess the possibility of increasing the recovery of coarser particles (+0.5 mm) within the downcomer of the Jameson cell. The effect of decreasing turbulence and agitation in a commercial-scale downcomer was investigated to assess the effect oil the recovery of both coarse and fine coal particles. This paper details the findings of the test work, summarising the results relating to differences in the operating parameters within the downcomer. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The high intensity zone within the Jameson Cell is the downcomer. It is largely external and separated from the flotation tank. This, together with operation of the downcomer under vacuum, rather than at elevated pressure and the absence of moving parts, allows ready access to the high intensity zone for measurement and analysis. Experimentation was conducted allowing measurements of recovery for residence times of between 20 milliseconds and ten seconds within the downcomer of a Jameson Cell. The affect of aeration rate on the recovery of different particle sizes was also studied.