978 resultados para Co-detection
Resumo:
AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.
Resumo:
Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed.
Resumo:
The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and "unknown", emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.
Resumo:
Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.
Resumo:
Wind power has become one of the popular renewable resources all over the world and is anticipated to occupy 12% of the total global electricity generation capacity by 2020. For the harsh environment that the wind turbine operates, fault diagnostic and condition monitoring are important for wind turbine safety and reliability. This paper employs a systematic literature review to report the most recent promotions in the wind turbine fault diagnostic, from 2005 to 2012. The frequent faults and failures in wind turbines are considered and different techniques which have been used by researchers are introduced, classified and discussed.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.
Resumo:
Long lived: Carbonyloxyl radicals (RCO2 .) are reactive intermediates that play key roles in initiating polymerization reactions. This reactivity also makes their direct observation difficult. For the first time a persistent organic RCO2 . radical is detected in the gas phase, its extraordinary longevity is attributed to the high barrier towards fragmentation owing to the endothermicity of the decarboxylation products. Grant Numbers ARC/DP0986738, ARC/DP120102922, ARC/DE120100467
Resumo:
Low-temperature plasmas in direct contact with arbitrary, written linear features on a Si wafer enable catalyst-free integration of carbon nanotubes into a Si-based nanodevice platform and in situ resolution of individual nucleation events. The graded nanotube arrays show reliable, reproducible, and competitive performance in electron field emission and biosensing nanodevices.
Resumo:
PbS quantum dots capped with mercaptoethanol (C2H5OSH) have been synthesized in poly vinyl alcohol and used to investigate their photoluminescence (PL) response to various ions such as zinc (Zn), cadmium (Cd), mercury (Hg), silver (Ag), copper (Cu), iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr) and nickel (Ni). The enhancement in the PL intensity was observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations was quite high, compared to that of Zn and Cd. It was observed that the change in Pb and S molar ratio has profound effect on the sensitivity of these ions. These results indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu quenched the photoluminescence. In Cd based QDs related ion probing, Hg and Cu was found to have quenching properties, however, our PbS QDs have quenching property only for Cu ions. This was attributed to the formation HgS at the surface that has bandgap higher than PbS. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa). which is an interesting feature for metal ion detectivity.
Resumo:
Mass occurrences (blooms) of cyanobacteria are common in aquatic environments worldwide. These blooms are often toxic, due to the presence of hepatotoxins or neurotoxins. The most common cyanobacterial toxins are hepatotoxins: microcystins and nodularins. In freshwaters, the main producers of microcystins are Microcystis, Anabaena, and Planktothrix. Nodularins are produced by strains of Nodularia spumigena in brackish waters. Toxic and nontoxic strains of cyanobacteria co-occur and cannot be differentiated by conventional microscopy. Molecular biological methods based on microcystin and nodularin synthetase genes enable detection of potentially hepatotoxic cyanobacteria. In the present study, molecular detection methods for hepatotoxin-producing cyanobacteria were developed, based on microcystin synthetase gene E (mcyE) and the orthologous nodularin synthetase gene F (ndaF) sequences. General primers were designed to amplify the mcyE/ndaF gene region from microcystin-producing Anabaena, Microcystis, Planktothrix, and Nostoc, and nodularin-producing Nodularia strains. The sequences were used for phylogenetic analyses to study how cyanobacterial mcy genes have evolved. The results showed that mcy genes and microcystin are very old and were already present in the ancestor of many modern cyanobacterial genera. The results also suggested that the sporadic distribution of biosynthetic genes in modern cyanobacteria is caused by repeated gene losses in the more derived lineages of cyanobacteria and not by horizontal gene transfer. Phylogenetic analysis also proposed that nda genes evolved from mcy genes. The frequency and composition of the microcystin producers in 70 lakes in Finland were studied by conventional polymerase chain reaction (PCR). Potential microcystin producers were detected in 84% of the lakes, using general mcyE primers, and in 91% of the lakes with the three genus-specific mcyE primers. Potential microcystin-producing Microcystis were detected in 70%, Planktothrix in 63%, and Anabaena in 37% of the lakes. The presence and co-occurrence of potential microcystin producers were more frequent in eutrophic lakes, where the total phosphorus concentration was high. The PCR results could also be associated with various environmental factors by correlation and regression analyses. In these analyses, the total nitrogen concentration and pH were both associated with the presence of multiple microcystin-producing genera and partly explained the probability of occurrence of mcyE genes. In general, the results showed that higher nutrient concentrations increased the occurrence of potential microcystin producers and the risk for toxic bloom formation. Genus-specific probe pairs for microcystin-producing Anabaena, Microcystis, Planktothrix, and Nostoc, and nodularin-producing Nodularia were designed to be used in a DNA-chip assay. The DNA-chip can be used to simultaneously detect all these potential microcystin/nodularin producers in environmental water samples. The probe pairs detected the mcyE/ndaF genes specifically and sensitively when tested with cyanobacterial strains. In addition, potential microcystin/nodularin producers were identified in lake and Baltic Sea samples by the DNA-chip almost as sensitively as by quantitative real-time PCR (qPCR), which was used to validate the DNA-chip results. Further improvement of the DNA-chip assay was achieved by optimization of the PCR, the first step in the assay. Analysis of the mcy and nda gene clusters from various hepatotoxin-producing cyanobacteria was rewarding; it revealed that the genes were ancient. In addition, new methods detecting all the main producers of hepatotoxins could be developed. Interestingly, potential microcystin-producing cyanobacterial strains of Microcystis, Planktothrix, and Anabaena, co-occurred especially in eutrophic and hypertrophic lakes. Protecting waters from eutrophication and restoration of lakes may thus decrease the prevalence of toxic cyanobacteria and the frequency of toxic blooms.