816 resultados para Cloud cover


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere–surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1–2 km.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is aimed to assess similarities and mismatches between the outputs from two independent methods for the cloud cover quantification and classification based on quite different physical basis. One of them is the SAFNWC software package designed to process radiance data acquired by the SEVIRI sensor in the VIS/IR. The other is the MWCC algorithm, which uses the brightness temperatures acquired by the AMSU-B and MHS sensors in their channels centered in the MW water vapour absorption band. At a first stage their cloud detection capability has been tested, by comparing the Cloud Masks they produced. These showed a good agreement between two methods, although some critical situations stand out. The MWCC, in effect, fails to reveal clouds which according to SAFNWC are fractional, cirrus, very low and high opaque clouds. In the second stage of the inter-comparison the pixels classified as cloudy according to both softwares have been. The overall observed tendency of the MWCC method, is an overestimation of the lower cloud classes. Viceversa, the more the cloud top height grows up, the more the MWCC not reveal a certain cloud portion, rather detected by means of the SAFNWC tool. This is what also emerges from a series of tests carried out by using the cloud top height information in order to evaluate the height ranges in which each MWCC category is defined. Therefore, although the involved methods intend to provide the same kind of information, in reality they return quite different details on the same atmospheric column. The SAFNWC retrieval being very sensitive to the top temperature of a cloud, brings the actual level reached by this. The MWCC, by exploiting the capability of the microwaves, is able to give an information about the levels that are located more deeply within the atmospheric column.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present observations of total cloud cover and cloud type classification results from a sky camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta with respect to the other methods. The sky camera overestimates cloudiness with respect to the other automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered when records from various observational techniques are being homogenized. Cloud type classification was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%. The performance of the algorithm mainly depends on the atmospheric conditions, site-specific characteristics, the randomness of the selected images, and possible visual misclassifications: The mean success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the test images were completely randomly selected and multiple cloud classes occurred in the images.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. Aims. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius a < a Coul crit being broken up. Methods. This work outlines the criteria required for the Coulomb explosion of dust clouds in substellar atmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Results. Our results show that for an atmospheric plasma region with an electron temperature of Te = 10 eV (≈105 K), the critical grain radius varies from 10−7 to 10−4 cm, depending on the grains’ tensile strength. Higher critical radii up to 10−3 cm are attainable for higher electron temperatures. We find that the process produces a bimodal particle size distribution composed of stable nanoscale seed particles and dust particles with a ≥ a Coul crit , with the intervening particle sizes defining a region devoid of dust. As a result, the dust population is depleted, and the clouds become optically thin in the wavelength range 0.1–10 μm, with a characteristic peak that shifts to higher wavelengths as more sub-micrometer particles are destroyed. Conclusions. In an atmosphere populated with a distribution of plasma volumes, this will yield regions of contrasting radiative properties, thereby giving a source of inhomogeneous cloud coverage. The results presented here may also be relevant for dust in supernova remnants and protoplanetary disks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The criterion, based on the thermodynamics theory, that the climatic system tends to extremizesome function has suggested several studies. In particular, special attention has been devoted to the possibility that the climate reaches an extremal rate of planetary entropy production.Due to both radiative and material effects contribute to total planetary entropy production,climatic simulations obtained at the extremal rates of total, radiative or material entropy production appear to be of interest in order to elucidate which of the three extremal assumptions behaves more similar to current data. In the present paper, these results have been obtainedby applying a 2-dimensional (2-Dim) horizontal energy balance box-model, with a few independent variables (surface temperature, cloud-cover and material heat fluxes). In addition, climatic simulations for current conditions by assuming a fixed cloud-cover have been obtained. Finally,sensitivity analyses for both variable and fixed cloud models have been carried out

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It was evaluated the annual evolution of global, direct and diffuse components of incident solar radiation on tilted surfaces to 12.85, 22.85 and 32.85º, facing north, in Botucatu, state of São Paulo, Brazil. The radiometric fractions were obtained for each component of the radiation in the aforementioned surfaces, through the ratio with the global and top of the atmosphere radiations. Seasonality was evaluated based on monthly averages of daily values. The measures occurred between 04/1998 and 07/2001 at 22.85º; 08/2001 and 02/2003 at 12.85º; and from 03/2003 to 12/2007 at 32.85º, with concomitant measures in the horizontal surface (reference). The levels of global and direct radiation on tilted surfaces were lower in summer and higher in the equinoxes when compared with the horizontal. The diffuse radiation on tilted surfaces was lower in most months, with losses of up to 65%. A trend of increasing differences occurred between horizontal and tilted surfaces with the increase of the angle in all the components and fractions of incident radiation. The annual evolution of rainfall and cloud cover ratio directly affected the atmospheric transmissivity of direct and diffuse components in the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study examined the floristic composition of three fragments of Araucaria Forest (AF) in the Planalto Catarinense region of southern Brazil as well as the floristic contextualization of these areas in relation to other remnant AF sites. Three AF fragments at different altitudes were analyzed in the municipalities of Campos Novos, Lages, and Painel. Fifty 200 m² plots were examined in each fragment and all of the trees with CBH (circumference at breast height) > 15.7 cm were identified. In order to floristically contextualize the study fragments, comparisons were made with other remnant AF sites by way of dendrograms and NMDS (Non-metric multidimensional scaling). Environmental and spatial variables were plotted on the diagram produced by the NMDS to evaluate their influence on the floristic patterns encountered. The forest fragments studied demonstrated high floristic heterogeneity, indicating that AFs cannot be considered homogeneous formations and they could be classified into 3 phytogeographical categories: i) high altitude areas influenced by cloud cover/fog, including the Painel region; ii) areas of lesser altitude and greater mean annual temperatures situated in the Paraná River basin, and iii) areas situated in the Paraná and Upper-Uruguay river basins and the smaller basins draining directly into the southern Atlantic, near Campos Novos and Lages. The environmental variables most highly correlated with species substitutions among the sites were altitude, mean annual temperature, and the mean temperature of the most humid trimester.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les naines brunes sont des objets astronomiques de faible masse ( 0.012 - 0.075 M_Sun ) et de basse température ( T < 3,500 K ). Bien qu’elles se forment comme des étoiles, c’est-à-dire par l’effondrement d’un nuage de gaz moléculaire, les naines brunes n’ont pas une masse suffisante pour entretenir des réactions de fusion nucléaire en leur coeur. Les naines brunes relativement chaudes (type L) sont recouvertes de nuages de poussière mais ces derniers disparaissent progressivement de l’atmosphère lorsque la température chute sous les 1,500 K (type T). Les naines brunes près de la transition L/T devraient donc être partiellement recouvertes de nuages. De par leur rotation relativement rapide (2 h - 12 h), le couvert nuageux inhomogène des naines brunes devrait produire une variabilité photométrique observable en bande J (1.2 um), la longueur d’onde à laquelle les nuages ont la plus forte opacité. Ce mémoire présente les résultats d’une recherche de variabilité photométrique infrarouge pour une dizaine de naines brunes de type spectral près de la transition L/T. Les observations, obtenues à l’Observatoire du Mont-Mégantic, ont permis le suivi photométrique en bande J de neuf cibles. Une seule d’entre elles, SDSS J105213.51+442255.7 (T0.5), montre des variations périodiques sur une période d’environ 3 heures avec une amplitude pic-à-pic variant entre 40 et 80 mmag. Pour les huit autres cibles, on peut imposer des limites (3 sigma) de variabilité périodique à moins de 15 mmag pour des périodes entre 1 et 6 heures. Ces résultats supportent l’hypothèse qu’un couvert nuageux partiel existe pour des naines brunes près de la transition L/T mais ce phénomène demeure relativement peu fréquent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce travail s’inscrit dans le cadre d’un programme de recherches appuyé par le Conseil de recherches en sciences humaines du Canada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study is undertaken with an objective to investigate the linkage between air-sea fluxes in the Indian Ocean and monsoon forcing. Since the monsoon activity is linked to fluxes, the variability of surface marine meteorological fields under the variable monsoon conditions is also studied. The very objective of the present study is to document various sea surface parameters of the Indian Ocean and to examine the anomalies found in them. Hence it is attempted to relate the anomaly to the variability of monsoon over India, highlighting the occasion of contrasting monsoon periods. The analysis of anomalies of surface meteorological fields such as SST, wind speed and direction, sea level pressure and cloud cover for contrasting monsoons are also studied. During good monsoon years, the pressure anomalies are negative indicating a fall in SLP during pre-monsoon and monsoon months. The interaction of the marine atmosphere with tropical Indian Ocean and its influence on ISMR continue to be an area of active research.