986 resultados para Climatic changes -- Research
Resumo:
Qualitative and quantitative changes in fossil flora and fauna have been used in many studies to infer climatic change. Here we ask a different question: how do flora and fauna respond to climatic changes such as rapid warming or cooling? As an independent proxy for paleotemperature we take the ratio of oxygen isotopes in biogenically precipitated lake marl and in ostracod shells. This introductory paper describes the project design and the five sites on an altitudinal transect from 600 m to about 2300 m asl in the western Swiss Alps. As cases of climatic cooling and warming we use the beginning and end of the Younger Dryas as major changes, and the Gerzensee and Preboreal oscillations as minor changes. At the two sites of Gerzensee and Leysin these changes are recorded in stable-isotope ratios, and there the time scales can be derived by correlations to the GRIP ice core (Schwander et al., 2000 and von Grafenstein et al., 2000). Biotic responses to climate changes are treated in individual papers using pollen (Wick, 2000), plant macrofossils (Tobolski and Ammann, 2000), and remains of chironomids (Brooks, 2000), beetles and other insects (Lemdahl, 2000), and chydorid Cladocera (Hofmann, 2000). They are followed by a synthesis focusing on quantification of biotic responses (Ammann et al., 2000). In addition, a reconstruction of summer temperatures for the Allerød and the Younger Dryas at Gerzensee is provided by Lotter et al. (2000).
Resumo:
To assess the presence or absence of lags in biotic responses to rapid climatic changes, we: (1) assume that the δ18O in biogenically precipitated carbonates record global or hemispheric climatic change at the beginning and at the end of the Younger Dryas without any lag at our two study sites of Gerzensee and Leysin, Switzerland; (2) derive a time scale by correlating the δ18O record from these two sites with the δ18O record of the GRIP ice core; (3) measure δ18O records in ostracods and molluscs to check the record in the bulk samples and to detect possible hydrological changes; (4) analyse at Gerzensee and Leysin as well as at two additional sites (that lack carbonates and hence a δ18O record) pollen, plant macrofossils, chironomids, beetles and other insects, and Cladocera; (5) estimate our sampling resolution using the GRIP time scale for the isotope stratigraphies and the biostratigraphies; and (6) summarise the major patterns of compositional change in the biostratigraphies by principal component analysis or correspondence analysis. We conclude that, at the major climatic shifts at the beginning and end of the Younger Dryas, hardly any biotic lags occur (within the sampling resolution of 8–30 years) and that upland vegetation responded as fast as aquatic invertebrates. We suggest that the minor climatic changes associated with the Gerzensee and Preboreal oscillations were weakly recorded in the biostratigraphies at the lowland site, but were more distinct at higher altitudes. Individualistic responses of plant and animal species to climatic change may reflect processes in individuals (e.g. productivity and phenology), in populations (e.g. population dynamics), in spatial distributions (e.g. migrations), and in ecosystems (e.g. trophic state). We suggest that biotic responses may be telescoped together into relatively short periods (50 to 150 years), perhaps disrupting functional interactions among species and thus destabilising ecosystems.
Resumo:
Plant macrofossils from the end of the Younger Dryas were analysed at three sites, Gerzensee (603 m asl), Leysin (1230 m asl), and Zeneggen (1510 m asl). For the first two sites an oxygen-isotope record is also available that was used to develop a time scale (Schwander et al., this volume); dates refer therefore to calibrated years according to the GRIP time scale. Around Gerzensee a pine forest with some tree birches grew during the Younger Dryas. With the onset of the isotopic shift initiating the rapid warming (about 11,535 cal. years before 1950), the pine forest became more productive and denser. At Leysin no trees except some juniper scrub grew during the Younger Dryas. Tree birches, pine, and poplar immigrated from lower altitudes and arrived after the end of the isotopic shift (about 11,487 B.P.), i.e., at the beginning of the Preboreal (at about 11,420 B.P.). Zeneggen is situated somewhat higher than Leysin, but single tree birches and pines survived the Younger Dryas at the site. At the beginning of the Preboreal their productivity and population densities increased. Simultaneously shifts from Nitella to Chara and from silt to gyttja are recorded, all indicating rapidly warming conditions and higher nutrient levels of the lake water (and probably of the soils in the catchment). At Gerzensee the beginning of the Younger Dryas was also analysed: the beginning of the isotopic shift correlates within one sample (about 15 years) to rapid decreases of macrofossils of pines and tree birches.
Resumo:
A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.
Resumo:
Pacing of the marine carbon cycle by orbital forcing during the Pliocene and Pleistocene Ice Ages [past 2.5 million years (Myr)] is well known. As older deep-sea sediment records are being studied at greater temporal resolution, it is becoming clear that similar fluctuations in the marine carbon system have occurred throughout the late Mesozoic and Tertiary, despite the absence of large continental ice sheets over much of this time. Variations in both the organic and the calcium carbonate components of the marine carbon system seem to have varied cyclically in response to climate forcing, and carbon and carbonate time series appear to accurately characterize the frequency spectrum of ancient climatic change. For the past 35 Myr, much of the variance in carbonate content carries the “polar” signal of obliquity [41,000 years (41 kyr)] forcing. Over the past 125 Myr, there is evidence from marine sediments of the continued role of precessional (≈21 kyr) climatic cycles. Repeat patterns of sedimentation at about 100, 400, and 2,400 kyr, the modulation periods of precession, persistently enter into marine carbon cycle records as well. These patterns suggest a nonlinear response of climate and/or the sedimentation of organic carbon and carbonates to precessional orbital perturbations. Nonlinear responses of the carbon system may help to amplify relatively weak orbital insolation anomalies into more significant climatic perturbations through positive feedback effects. Nonlinearities in the carbon cycle may have transformed orbital-climatic cycles into long-wavelength features on time scales comparable to the residence times of carbon and nutrient elements in the ocean.
Resumo:
v.7:no.2 (1882)
Resumo:
The magnetic properties of a sediment core from a high altitude lake in the Swiss Alps were compared with palynological and geochemical data to link climatic and mineral magnetic variations. According to pollen data, the sediments extend from the present to the Younger Dryas, i.e., they cover more than 10,000 years of environmental change in the Alps. The major change in magnetic properties corresponds to the climatic warming of the early Holocene. High-coercivity magnetic minerals that characterize the Late Glacial period almost disappeared during the Holocene and the concentration of ferrimagnetic minerals increased sharply. The contribution of superparamagnetic grains also decreased in the Holocene sediments. Similar variations in {SP} content and coercivity, of smaller magnitude, are found in the Holocene and are interpreted to represent minor climatic variations. Comparison with the historical record of the last 1000 years confirms this interpretation. The magnetic mineralogy, the superparamagnetic contents, and the {IRM} intensity in the coarse-grained, Late Glacial sediments are similar to those measured in the catchment bedrock. This indicates a detrital origin. The different properties and the higher concentration of magnetic minerals in the Holocene sediments are due to authigenic phases. Magnetic properties provide a high resolution record of climatic change. They are sensitive even to small variations that are not recorded in the pollen or {LOI} data. Magnetic parameters show fine-scale variation and constitute a valuable supplement to conventional climatic indicators.
Resumo:
Mode of access: Internet.
Resumo:
Extreme abiotic factors, such drought combined with heat waves and/or high UVB radiation are predicted to become more frequent in the future. The impact on plant production of these challenges on multipurpose Moringa oleifera L. remains unclear. A susceptibility of this species may lead to increase poverty in endangered regions. M. oleifera is a woody species native from sub-Himalaya regions under high climate stress pressure. The interest on this species is emerging due to its several medicinal properties and its nutritional value. Agropharmaceutical industry is interest in this species too. To understand the impact of increased climate factors, young (2 months old) plants of this species were exposed to water deficit (WD) and UVB (alone or combined). WD and WD+UVB imposition consists of unwater for 4 days. After 1 day withholding water, UVB and WD+UVB were irradiated with 26.3 kJ m-2 distributed per 3 days. Immediately after treatment exposition (1 day) and after 10 days, plant water status, growth, carbon metabolism and oxidative stress were measured. Overall no significant differences were observed in WD, regarding the parameters analysed, except on gas exchanges, MDA and phenols. The plants exposed to UVB showed, in general, more severe effects, as higher pigment content, MDA and membrane permeability, while no changes were observed in the total antioxidant activity. Plants exposed to UVB+WD, despite changes observed, the impact was lower than the one observed in UVB exposed plants, meaning that a protective/adaptive mechanism was developed in the plants under combined stressors. On the other hand, in all treatments the net CO2 assimilation rate decreased. Results suggest that M. oleifera has some tolerance to WD and UVB, and that develops mechanism of adaptation to these two types of stress that often arise in combination under a climate change scenario.
Resumo:
El Grup de Física Ambiental de la Universitat de Girona participa en el programa internacional CLIMSEAS. L’objectiu és crear una xarxa de científics que aportin coneixement al procés de canvi climàtic a través de l’estudi dels mars interiors. Els quatre anys vinents estudiaran els mars de l’Àsia Central
Resumo:
Climate controls upland habitats, soils and their associated ecosystem services; therefore, understanding possible changes in upland climatic conditions can provide a rapid assessment of climatic vulnerability over the next century. We used 3 different climatic indices that were optimised to fit the upland area classified by the EU as a Severely Disadvantaged Area (SDA) 1961–1990. Upland areas within the SDA covered all altitudinal ranges, whereas the maximum altitude of lowland areas outside of the SDA was ca. 300 m. In general, the climatic index based on the ratio between annual accumulated temperature (as a measure of growing season length) and annual precipitation predicted 96% of the SDA mapped area, which was slightly better than those indices based on annual or seasonal water deficit. Overall, all climatic indices showed that upland environments were exposed to some degree of change by 2071–2100 under UKCIP02 climate projections for high and low emissions scenarios. The projected area declined by 13 to 51% across 3 indices for the low emissions scenario and by 24 to 84% for the high emissions scenario. Mean altitude of the upland area increased by +11 to +86 m for the low scenario and +21 to +178 m for the high scenario. Low altitude areas in eastern and southern Great Britain were most vulnerable to change. These projected climatic changes are likely to affect upland habitat composition, long-term soil carbon storage and wider ecosystem service provision, although it is not yet possible to determine the rate at which this might occur.
Resumo:
Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larbc decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereas in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equally might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of ·the periods of low timberline can be correlated by radiocarbon dating with climatic changes in the Alps as indicated by glacier ad vances in combination with palynological records, solifluction, and dendrocli matical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluc tuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscil lation) in the Alps is made with paleoecological data from North America and Scandinavia and a climatic signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).
Resumo:
The publication of the fourth IPCC report, as well as the number of research results reported in recent years about the regionalization of climate projections, were the driving forces to justify the update of the report on climate change in Catalonia. Specifically, the new IPCC report contains new climate projections at global and continental scales, while several international projects (especially European projects PRUDENCE and ENSEMBLES) have produced continental-scale climate projections, which allow for distinguishing between European regions. For Spain, some of these results have been included in a document commissioned by the“State Agency of Meteorology”. In addition, initiatives are being developed within Catalonia (in particular, by the Meteorological Service of Catalonia) to downscale climate projections in this area. The present paper synthesizes results of these and other previously published studies, as well as our own analysis of results of the ENSEMBLES project. The aim is to propose scenarios of variation in temperature and rainfall in Catalonia during the 21st Century. Thus, by the middle of this century temperatures could rise up to 2 C compared with that of the late 20th Century. These increases would probably be higher in summer than in winter, generalized across the territory but less pronounced in coastal areas. Rainfall, however, would not change much, but it could slightly decrease. Towards the end of the 21st Century, temperatures could rise to about 5 C above that of the last century, while the average rainfall could decrease by more than 10%. Increases in temperature would be higher in summer and in areas further from the coast. Rainfall would decrease especially during the summer, while it could even increase in winter in mountainous areas such as the Pyrenees.
Resumo:
Carbon emissions related to human activities have been significantly contributing to the elevation of atmospheric [CO(2)] and temperature. More recently, carbon emissions have greatly accelerated, thus much stronger effects on crops are expected. Here, we revise literature data concerning the physiological effects of CO(2) enrichment and temperature rise on crop species. We discuss the main advantages and limitations of the most used CO(2)-enrichment technologies, the Open-Top Chambers (OTCs) and the Free-Air Carbon Enrichment (FACE). Within the conditions expected for the next few years, the physiological responses of crops suggest that they will grow faster, with slight changes in development, such as flowering and fruiting, depending on the species. There is growing evidence suggesting that C(3) crops are likely to produce more harvestable products and that both C(3) and C(4) crops are likely to use less water with rising atmospheric [CO(2)] in the absence of stressful conditions. However, the beneficial direct impact of elevated [CO(2)] on crop yield can be offset by other effects of climate change, such as elevated temperatures and altered patterns of precipitation. Changes in food quality in a warmer, high-CO(2) world are to be expected, e.g., decreased protein and mineral nutrient concentrations, as well as altered lipid composition. We point out that studies related to changes in crop yield and food quality as a consequence of global climatic changes should be priority areas for further studies, particularly because they will be increasingly associated with food security. (c) 2009 Elsevier Ltd. All rights reserved.