997 resultados para Circulating Dna
Resumo:
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.
Resumo:
Background: The frontline management of non-oncogene addicted non-small cell lung cancer (NSCLC) involves immunotherapy (ICI) alone or combined with chemotherapy (CT-ICI). As therapeutic options expand, refining NSCLC genotyping gains paramount importance. The dynamic landscape of KRAS-positive NSCLC presents a spectrum of treatment options, including ICI, targeted therapy, and combination strategies currently under investigation. Methods: The two-year RASLUNG project, featuring both retrospective and prospective cohorts, aimed to analyze the predictive and prognostic impact of KRAS mutations on tumor tissue and circulating DNA (ctDNA). Secondary objectives included assessing the roles of co-mutations and longitudinal changes in KRAS mutant copies concerning treatment response and survival outcomes. An external validation study confirmed the prognostic or predictive significance of co-mutations. Results: In the prospective cohort (n=24), patients with liver metastases exhibited significantly elevated ctDNA levels(p=0.01), while those with >3 metastatic sites showed increased Allele Frequency (AF) (P=0.002). Median overall survival (OS) was 7.5 months, progression-free survival (PFS) was 4.0 months, and the objective response rate (ORR) was 33.3%. Higher AF correlated with an increased risk of death (HR 1.04, p = 0.03), though not progression. Notably, a reduction in plasma DNA levels was significantly associated with objective response(p=0.01). In the retrospective cohort, KRAS and STK11 mutations co-occurred in 14/21 patients (p=0.053). STK11 mutations were independently detrimental to OS (HR 1.97, p=0.025) after adjusting for various factors. KRAS tissue AF did not correlate with OS or PFS. Within the validation dataset, STK11 mutations were significantly associated with an increased risk of death in univariate (HR 2.01, p<0.001) and multivariate models (HR 1.66, p=0.001) after adjustments. Conclusion: The RAS-Lung Project, employing innovative genotyping techniques, underscores the significance of comprehensive NSCLC genotyping. Tailored next-generation sequencing (NGS) and ctDNA monitoring may offer potential benefits in navigating the evolving landscape of KRAS-positive NSCLC treatment.
Resumo:
DNA that enters the circulation is rapidly cleared both by tissue uptake and by DNase-mediated degradation. In this study, we have examined the uptake of linear plasmid DNA in an isolated perfused liver model and following intra-arterial administration to rats. We found that the DNA was rapidly taken up by the isolated perfused liver without degradation. The single-pass extraction ratio was 0.76 +/- 0.05, the mean transit time was 15.3 +/- 3.6 s, and the volume of distribution was 0.29 +/- 0.07 ml/g. Hepatic uptake was saturable and was inhibited by polyinosinic acid or polycationic liposomes but not by condensation of the DNA with polylysine. When the linear plasmid DNA was administered in vivo, plasma half-life was 3.1 +/- 0.2 min, volume of distribution was 670 +/- 85 ml/kg, and clearance was 32 +/- 4 min. Coadministration of cationic liposomes decreased the volume of distribution to 180 +/- 28 ml/kg as well as the half-life (2.6 +/- 0.2 min). By contrast, polyinosinic acid significantly increased the circulating half-life (7.7 +/- 0.5 min), decreased the volume of distribution (95 +/- 17 ml/kg), and partially inhibited DNA degradation. When administered along with the liposomes and the polyinosinic acid, the distribution of plasmid-derived radioactivity decreased in the liver and increased in most other peripheral tissues. This study shows that pharmacological manipulation of the uptake and degradation of DNA can alter its distribution and clearance in vivo. These results may be useful in optimizing gene delivery procedures for in vivo gene therapy.
Resumo:
Tumor genomic instability and selective treatment pressures result in clonal disease evolution; molecular stratification for molecularly targeted drug administration requires repeated access to tumor DNA. We hypothesized that circulating plasma DNA (cpDNA) in advanced cancer patients is largely derived from tumor, has prognostic utility, and can be utilized for multiplex tumor mutation sequencing when repeat biopsy is not feasible. We utilized the Sequenom MassArray System and OncoCarta panel for somatic mutation profiling. Matched samples, acquired from the same patient but at different time points were evaluated; these comprised formalin-fixed paraffin-embedded (FFPE) archival tumor tissue (primary and/or metastatic) and cpDNA. The feasibility, sensitivity, and specificity of this high-throughput, multiplex mutation detection approach was tested utilizing specimens acquired from 105 patients with solid tumors referred for participation in Phase I trials of molecularly targeted drugs. The median cpDNA concentration was 17 ng/ml (range: 0.5-1600); this was 3-fold higher than in healthy volunteers. Moreover, higher cpDNA concentrations associated with worse overall survival; there was an overall survival (OS) hazard ratio of 2.4 (95% CI 1.4, 4.2) for each 10-fold increase in cpDNA concentration and in multivariate analyses, cpDNA concentration, albumin, and performance status remained independent predictors of OS. These data suggest that plasma DNA in these cancer patients is largely derived from tumor. We also observed high detection concordance for critical 'hot-spot' mutations (KRAS, BRAF, PIK3CA) in matched cpDNA and archival tumor tissue, and important differences between archival tumor and cpDNA. This multiplex sequencing assay can be utilized to detect somatic mutations from plasma in advanced cancer patients, when safe repeat tumor biopsy is not feasible and genomic analysis of archival tumor is deemed insufficient. Overall, circulating nucleic acid biomarker studies have clinically important multi-purpose utility in advanced cancer patients and further studies to pursue their incorporation into the standard of care are warranted.
Resumo:
Chagas disease caused by Trypanosoma cruzi is a complex disease that is endemic and an important problem in public health in Latin America. The T. cruzi parasite is classified into six discrete taxonomic units (DTUs) based on the recently proposed nomenclature (TcI, TcII, TcIII, TcIV, TcV and TcVI). The discovery of genetic variability within TcI showed the presence of five genotypes (Ia, Ib, Ic, Id and Ie) related to the transmission cycle of Chagas disease. In Colombia, TcI is more prevalent but TcII has also been reported, as has mixed infection by both TcI and TcII in the same Chagasic patient. The objectives of this study were to determine the T. cruzi DTUs that are circulating in Colombian chronic Chagasic patients and to obtain more information about the molecular epidemiology of Chagas disease in Colombia. We also assessed the presence of electrocardiographic, radiologic and echocardiographic abnormalities with the purpose of correlating T. cruzi genetic variability and cardiac disease. Molecular characterization was performed in Colombian adult chronic Chagasic patients based on the intergenic region of the mini-exon gene, the 24S alpha and 18S regions of rDNA and the variable region of satellite DNA, whereby the presence of T. cruzi I, II, III and IV was detected. In our population, mixed infections also occurred, with TcI-TcII, TcI-TcIII and TcI-TcIV, as well as the existence of the TcI genotypes showing the presence of genotypes Ia and Id. Patients infected with TcI demonstrated a higher prevalence of cardiac alterations than those infected with TcII. These results corroborate the predominance of TcI in Colombia and show the first report of TcIII and TcIV in Colombian Chagasic patients. Findings also indicate that Chagas cardiomyopathy manifestations are more correlated with TcI than with TcII in Colombia.
Resumo:
DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine`s potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 mu g naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-gamma (IFN-gamma) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-gamma responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals. Cancer Gene Therapy (2009) 16, 598-608; doi:10.1038/cgt.2009.9; published online 6 February 2009
Resumo:
Molecular characterization of one stable strain of Trypanosoma cruzi, the 21 SF, representative of the pattern of strains isolated from the endemic area of São Felipe, State of Bahia, Brazil, maintained for 15 years in laboratory by serial passages in mice and classified as biodeme Type II and zymodeme 2 has been investigated. The kinetoplast DNA (kDNA) of parental strain, 5 clones and 14 subclones were analyzed. Schizodeme was established by comparative study of the fragments obtained from digestion of the 330-bp fragments amplified by polymerase chain reaction (PCR) from the variable regions of the minicicles, and digested by restriction endonucleases Rsa I and Hinf I. Our results show a high percentual of similarity between the restriction fragment lenght polymorphism (RFLP) for the parental strain and its clones and among these individual clones and their subclones at a level of 80 to 100%.This homology indicates a predominance of the same "principal clone" in the 21SF strain and confirms the homogeneity previously observed at biological and isozymic analysis. These results suggest the possibility that the T. cruzi strains with similar biological and isoenzymic patterns, circulating in this endemic area, are representative of one dominant clone. The presence of "principal clones" could be responsible for a predominant tropism of the parasites for specific organs and tissues and this could contribute to the pattern of clinico-pathological manifestations of Chagas's disease in one geographical area.
Resumo:
Rhinoviruses and enteroviruses are leading causes of respiratory infections. To evaluate genotypic diversity and identify forces shaping picornavirus evolution, we screened persons with respiratory illnesses by using rhinovirus-specific or generic real-time PCR assays. We then sequenced the 5 untranslated region, capsid protein VP1, and protease precursor 3CD regions of virus-positive samples. Subsequent phylogenetic analysis identified the large genotypic diversity of rhinoviruses circulating in humans. We identified and completed the genome sequence of a new enterovirus genotype associated with respiratory symptoms and acute otitis media, confirming the close relationship between rhinoviruses and enteroviruses and the need to detect both viruses in respiratory specimens. Finally, we identified recombinants among circulating rhinoviruses and mapped their recombination sites, thereby demonstrating that rhinoviruses can recombine in their natural host. This study clarifies the diversity and explains the reasons for evolution of these viruses.
Resumo:
Thirty eight patients with indeterminate leprosy (HI), at least 4 to 6 years after discharge from multibacillary (MB) or paucibacillary (PB) schemes of anti leprosy multidrug therapy (MDT), were submitted to traditional diagnostic procedures for leprosy and to polymerase chain reaction (PCR) analysis of different clinical samples for detection of Mycobacterium leprae DNA. No significant difference was observed for any of the parameters analyzed between PB or MB schemes of treatment and no indications were found for more efficient outcome of HI using the MB scheme. Remarkably, 18 (54.5%) of the individuals were PCR positive in at least one of the samples: positivity of PCR was highest in blood samples and four individuals were PCR positive in blood and some other sample. Upon comparison of PCR results with clinical and histopathological parameters, no correlation was found between PCR-positivity and eventual relapse. This is the first report on detection of M. leprae DNA in PB patients, more than half a decade after completion of MDT, suggesting that live bacilli are present and circulating much longer than expected, although reinfection of the individuals can not be excluded. Overall, we feel that because of the high sensitivity of the assay, extreme care should be taken about association of PCR results, efficacy of treatment and disease status.
Resumo:
As Schistosoma sp. control programs are chiefly based on treatment of infected population, adequate case finding has a crucial role. The available diagnostic methods are far from ideal, since the search for eggs in stools and the detection of circulating antigens lack sensitivity in low prevalence and post-treatment situations and antibody detection lacks specificity. In most endemic foci, repeated treatment of infected people leaves a number of non-diagnosed and consequently non-treated persons, enough to maintain a persistent residue of 5 to 10% prevalence. In an attempt to surpass these diagnostic limitations we have developed a polymerase chain reaction (PCR) for the detection of Schistosoma sp. in feces that, in a first population study, has shown to be more sensitive than three-repeated stool Kato-Katz examination. The PCR may constitute a valuable tool for the diagnosis of the Schistosoma sp. infection in special situations, when high sensitivity and specificity are required and infrastructure is available.
Resumo:
BACKGROUND FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
Resumo:
The identification of the genotypes of Echinococcus granulosus present in livestock and wild animals within regions endemic for cystic echinococcosis (CE) is epidemiologically important. Individual strains display different biological characteristics that contribute to outbreaks of CE and that must be taken into account in the design of intervention programs. In this study, samples of hydatid cysts due to E. granulosus were collected from alpacas (4) in Puno and pigs (8) in Ayacucho in Peru, an endemic region for CE. Polymerase chain reaction amplification and DNA sequencing of specific regions of the mitochondrial cytochrome C oxidase subunit 1 and NADH dehydrogenase subunit 1 genes confirmed the presence of a strain common to sheep, the G1 genotype, in alpacas. Two different strains of E. granulosus were identified in pigs: the G1 and the G7 genotypes. This is the first report of the G1 genotype of E. granulosus in alpacas in endemic regions of CE in Peru.
Resumo:
Systemic lupus erythematosus (SLE) is a severe and incurable autoimmune disease characterized by chronic activation of plasmacytoid dendritic cells (pDCs) and production of autoantibodies against nuclear self-antigens by hyperreactive B cells. Neutrophils are also implicated in disease pathogenesis; however, the mechanisms involved are unknown. Here, we identified in the sera of SLE patients immunogenic complexes composed of neutrophil-derived antimicrobial peptides and self-DNA. These complexes were produced by activated neutrophils in the form of web-like structures known as neutrophil extracellular traps (NETs) and efficiently triggered innate pDC activation via Toll-like receptor 9 (TLR9). SLE patients were found to develop autoantibodies to both the self-DNA and antimicrobial peptides in NETs, indicating that these complexes could also serve as autoantigens to trigger B cell activation. Circulating neutrophils from SLE patients released more NETs than those from healthy donors; this was further stimulated by the antimicrobial autoantibodies, suggesting a mechanism for the chronic release of immunogenic complexes in SLE. Our data establish a link between neutrophils, pDC activation, and autoimmunity in SLE, providing new potential targets for the treatment of this devastating disease.