993 resultados para Chromosomal rearrangement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The karyotypes of five species of Brazilian Pseudophyllinae belonging to four tribes were here studied. The data available in the literature altogether with those obtained with species in here studied allowed us to infer that 2n(♂)=35 is the highest chromosome number found in the family Tettigoniidae and that it is present in species belonging to Pseudophyllinae, Zaprochilinae and in one species of Tettigoniinae. In spite of that all five species exhibit secondary karyotypes arisen surely by a mechanism of chromosomal rearrangement of centric fusion, tandem fusion and centric inversion types from those with 2n(♂)=35 and FN=35, they share some common traits. The X chromosome is submetacentric (FN=36), heteropicnotic during the first prophase, the largest of the set but its size is rather variable among the species and the sex chromosomal mechanism is of the XO( ♂ ), XX( ♀ ) type. The chromosomal rearrangements involved in the karyotype evolution of the Pseudophyllinae and its relationship with those of the family Tettigoniidae are discussed and we propose that the basic and the ancestral karyotype of the Tettigoniidae is formed by 2n(♂)=35, FN=35 and not by 2n(♂)=31, FN= 31, as usually accepted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Karyotypes of six species of the genus Stevia from Southern Brazil were studied, utilizing root tip metaphases. All species were diploid with 2n = 22 chromosomes. It was possible to identify each species by chromosome morphology. The basic chromosome number for Brazilian species of Stevia is X = 11. This number is also found in almost all South American species. We suggest that in Stevia there is an evolutionary trend toward chromosomal rearrangement, caused mainly by pericentric inversions. It was found that, in addition to aneuploidy and polyploidy, chromosomal rearrangements are common in the tribe Eupatorieae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigated the mitotic and meiotic chromosomes of 11 Buthidae scorpion species, belonging to three genera (Ananteris, Rhopalurus and Tityus), to obtain detailed knowledge regarding the mechanisms underlying the intraspecific and/or interspecific diversity of chromosome number and the origin of the complex chromosome associations observed during meiosis. The chromosomes of all species did not exhibit a localised centromere region and presented synaptic and achiasmatic behaviour during meiosis I. Spermatogonial and/or oogonial metaphase cells of these buthids showed diploid numbers range from 2n = 6 to 2n = 28. In most species, multivalent chromosome associations were observed in pachytene and postpachytene nuclei. Moreover, intraspecific variability associated with the presence or absence of chromosome chains and the number of chromosomes in the complex meiotic configurations was observed in some species of these three genera. Silver-impregnated cells revealed that the number and location of nucleolar organiser regions (NORs) remained unchanged despite extensive chromosome variation; notably, two NORs located on the terminal or subterminal chromosome regions were commonly observed for all species. C-banded and fluorochrome-stained cells showed that species with conspicuous blocks of heterochromatin exhibited the lowest rate of chromosomal rearrangement. Based on the investigation of mitotic and meiotic cells, we determined that the intraspecific variability occurred as a consequence of fission/fusion-type chromosomal rearrangements in Ananteris and Tityus species and reciprocal translocation in Rhopalurus species. Furthermore, we verified that individuals presenting the same diploid number differ in structural chromosome organisation, giving rise to intraspecific differences of chromosome association in meiotic cells (bivalent-like elements or chromosome chains). © 2013 Springer Science+Business Media Dordrecht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. © 2013 Lima et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of the lymphomas arising in the oral cavity are of B-cell origin. Among these, diffuse large B-cell lymphomas are the most common. Diffuse large B-cell lymphomas may exhibit more than one chromosomal rearrangement and are then referred to as 'double-hit' or 'triple-hit' lymphomas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synovial sarcomas are high-grade malignant mesenchymal tumors that account for 10% of all soft-tissue sarcomas. Almost 95% of these tumors are characterized by a nonrandom chromosomal abnormality, t(X;18)(p11.2;q11.2), that is observed in both biphasic and monophasic variants. In this article, we present the case of a 57-year-old woman diagnosed with high-grade biphasic synovial sarcoma in which conventional cytogenetic analysis revealed the constant presence of a unique t(18;22)(q12;q13), in addition to trisomy 8. The rearrangement was confirmed by fluorescence in situ hybridization. The use of the whole chromosome painting probes WCPX did not detect any rearrangements involving chromosome X, although reverse-transcriptase polymerase chain reaction (PCR) analysis demonstrated the conspicuous presence of a SYT/SXX1 fusion gene. Spectral karyotyping (SKY) was also performed and revealed an insertion of material from chromosome 18 into one of the X chromosomes at position Xp11.2. Thus, the karyotype was subsequently interpreted as 47,X,der(X)ins(X;18) (p11.2;q11.2q11.2),der(18)del(18)(q11.2q11.2)t(18;22)(q12;q13),der(22)t(18;22). Real-time PCR analysis of BCL2 expression in the tumor sample showed a 433-fold increase. This rare finding exemplifies that thorough molecular-cytogenetic analyses are required to elucidate complex and/or cryptic tumor-specific translocations. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gibbon genome exhibits extensive karyotypic diversity with an increased rate of chromosomal rearrangements during evolution. In an effort to understand the mechanistic origin and implications of these rearrangement events, we sequenced 24 synteny breakpoint regions in the white-cheeked gibbon (Nomascus leucogenys, NLE) in the form of high-quality BAC insert sequences (4.2 Mbp). While there is a significant deficit of breakpoints in genes, we identified seven human gene structures involved in signaling pathways (DEPDC4, GNG10), phospholipid metabolism (ENPP5, PLSCR2), beta-oxidation (ECH1), cellular structure and transport (HEATR4), and transcription (ZNF461), that have been disrupted in the NLE gibbon lineage. Notably, only three of these genes show the expected evolutionary signatures of pseudogenization. Sequence analysis of the breakpoints suggested both nonclassical nonhomologous end-joining (NHEJ) and replication-based mechanisms of rearrangement. A substantial number (11/24) of human-NLE gibbon breakpoints showed new insertions of gibbon-specific repeats and mosaic structures formed from disparate sequences including segmental duplications, LINE, SINE, and LTR elements. Analysis of these sites provides a model for a replication-dependent repair mechanism for double-strand breaks (DSBs) at rearrangement sites and insights into the structure and formation of primate segmental duplications at sites of genomic rearrangements during evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytogenetic investigations based on conventional and differential staining analysis (C-and replication R-banding and Ag-staining) were carried out on eight specimens of Phyllopezus periosus, 17 of P. pollicaris pollicaris, and one of P. pollicaris przewalskii collected from different localities of Brazil. P. periosus and P. p. pollicaris share the same diploid number of 2n = 40 chromosomes, and their karyotypes are very distinctive regarding to the number of biarmed and uniarmed chromosomes. After careful side-by-side comparison of R-banded chromosomes in both taxa, pronounced homology between, at least, eight pairs was revealed. The R-banding patterns allowed us to postulate that karyotype differentiation could be due to pericentric inversion events. P. p. przewalskii (2n = 38) exhibited a very similar karyotype to that found in P. p. pollicaris, except for the presence of one metacentric pair, which probably resulted from a Robertsonian rearrangement. Single and multiple pairs of NOR-bearing chromosomes, showing variation in number and location, were detected among the three forms of Phyllopezus. Similar C-banding patterns were found in P. periosus and P. p. pollicaris. Sex chromosomes were not positively identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal translocations require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are involved in producing leukemias, lymphomas and sarcomas. Translocations are frequent, clonal and recurrent in mature B cell lymphomas, which bear a particularly high DNA damage burden by virtue of activation-induced cytidine deaminase (AID) expression. Despite the ubiquity of genomic rearrangements, the forces that underlie their genesis are not well understood. Here, we provide a detailed description of a new method for studying these events, translocation capture sequencing (TC-Seq). TC-Seq provides the means to document chromosomal rearrangements genome-wide in primary cells, and to discover recombination hotspots. Demonstrating its effectiveness, we successfully estimate the frequency of c-myc/IgH translocations in primary B cells, and identify hotspots of AID-mediated recombination. Furthermore. TC-Seq can be adapted to generate genome-wide rearrangement maps in any cell type and under any condition. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-genome duplication approximately 108 years ago was proposed as an explanation for the many duplicated chromosomal regions in Saccharomyces cerevisiae. Here we have used computer simulations and analytic methods to estimate some parameters describing the evolution of the yeast genome after this duplication event. Computer simulation of a model in which 8% of the original genes were retained in duplicate after genome duplication, and 70–100 reciprocal translocations occurred between chromosomes, produced arrangements of duplicated chromosomal regions very similar to the map of real duplications in yeast. An analytical method produced an independent estimate of 84 map disruptions. These results imply that many smaller duplicated chromosomal regions exist in the yeast genome in addition to the 55 originally reported. We also examined the possibility of determining the original order of chromosomal blocks in the ancestral unduplicated genome, but this cannot be done without information from one or more additional species. If the genome sequence of one other species (such as Kluyveromyces lactis) were known it should be possible to identify 150–200 paired regions covering the whole yeast genome and to reconstruct approximately two-thirds of the original order of blocks of genes in yeast. Rates of interchromosome translocation in yeast and mammals appear similar despite their very different rates of homologous recombination per kilobase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rearrangement of chromosomal bands 1q21–23 is one of the most frequent chromosomal aberrations observed in hematological malignancy. The genes affected by these rearrangements remain poorly characterized. Typically, 1q21–23 rearrangements arise during tumor evolution and accompany disease-specific chromosomal rearrangements such as t(14;18) (BCL2) and t(8;14) (MYC), where they are thus thought to play an important role in tumor progression. The pathogenetic basis of this 1q21–23-associated disease progression is currently unknown. In this setting, we surveyed our series of follicular lymphoma for evidence of recurring 1q21–23 breaks and identified three cases in which a t(14;18)(q32;q21) was accompanied by a novel balanced t(1;22)(q22;q11). Molecular cloning of the t(1;22) in a cell line (B593) derived from one of these cases and detailed fluorescent in situ hybridization mapping in the two remaining cases identified the FCGR2B gene, which encodes the immunoreceptor tyrosine-based inhibition motif-bearing IgG Fc receptor, FcγRIIB, as the target gene of the t(1;22)(q22;q11). We demonstrate deregulation of FCGR2B leading to hyperexpression of FcγRIIb2 as the principal consequence of the t(1;22). This is evidence that IgG Fc receptors can be targets for deregulation through chromosomal translocation in lymphoma. It suggests that dysregulation of FCGR2B may play a role in tumor progression in follicular lymphoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A versatile and metal-free approach for the synthesis of carbocycles and of heterocycles bearing seven- and eight-membered rings is described. The strategy is based on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Reaction conditions can be easily adjusted to give ring expansion products bearing different functional groups. A route to medium-ring lactones was also developed.