956 resultados para Chitosan derivatives
Resumo:
壳聚糖是一种天然的聚阳离子多糖,可以从甲壳类动物、菌类、昆虫等自然资源中提取得到。壳聚糖具有良好的生物相容性,天然无毒,可生物降解,从而在生物工程、制药、化妆品、纺织品、农业等领域引起了广泛关注。 随着对壳聚糖以及壳聚糖衍生物研究的深入,壳聚糖的抑菌活性由于农业杀菌剂的环境问题和抗药性问题的出现而得到重视。但是,对于壳聚糖抑菌活性的研究大都集中于壳聚糖的分子量和脱乙酰度对其活性的影响,而相应的壳聚糖衍生物很少。本文合成了羧甲基壳聚糖希夫碱,N-取代羧甲基壳聚糖,脲取代羧甲基壳聚糖,壳聚糖季铵盐以及羧甲基壳聚糖季铵盐,并对它们的抑菌活性进行了研究,同时探讨了导入基团与抑菌活性间的构效关系。 羧甲基壳聚糖希夫碱对苹果腐烂病菌、番茄早疫病菌和棉花枯萎病菌的抑制活性研究结果表明2-(2-羟基-5-硝基苯亚胺基)羧甲基壳聚糖和2-(2-羟基-5-氯苯亚胺基)羧甲基壳聚糖的抑菌活性高于壳聚糖、羧甲基壳聚糖和2-(2-羟基苯亚胺基)羧甲基壳聚糖,原因可能是2-羟基-5-硝基苯亚胺基和2-羟基-5-氯苯亚胺基两个活性基团的引入。对番茄早疫病菌和苹果轮纹病菌的抑制效果表明,N-取代羧甲基壳聚糖的抑菌活性低于壳聚糖和羧甲基壳聚糖,脲取代羧甲基壳聚糖的抑菌活性高于羧甲基壳聚糖。 测定了壳聚糖季铵盐对灰葡萄孢以及炭疽病菌的抑制活性,结果表明壳聚糖季铵盐的抑制活性高于壳聚糖。因为壳聚糖分子的正电荷可以和菌体细胞壁的负离子相互结合,从而导致菌体死亡,而壳聚糖季铵盐分子中明显的正电性可以促进这种结合能力,从而更进一步的增强抑菌活性。由于相同的原因,抑菌活性随着正电荷的增强而增强,与此同时,高分子量壳聚糖季铵盐由于其较大的体积而具有比低分子量壳聚糖季铵盐更高的抑菌活性。 为了进一步验证氨基的正电性与抑菌活性的关系,合成了羧甲基壳聚糖季铵盐并对这类衍生物对灰葡萄孢和炭疽病菌的抑制活性进行了测定,结果表明,羧甲基壳聚糖季铵盐的抑菌活性高于羧甲基壳聚糖,且部分羧甲基壳聚糖季铵盐的抑菌活性高于壳聚糖。500μg/mL时,N-(2-羟基-5-硝基苯亚甲基)-N,N-二甲基羧甲基壳聚糖和N-(2-羟基-5-氯苯亚甲基)-N,N-二甲基羧甲基壳聚糖对苹果轮纹病菌的抑制率都达到100%。壳聚糖季铵盐中正电荷在抑菌活性中的作用再一次被证实。
Resumo:
Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present invention relates to biofungicides based on cationic, amphiphilic chitosan derivatives, with increasing proportions of dodecyl groups, for use against the fungus Aspergillus flavus, and to the method for producing said biofungicides.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chitosan, carboxymethyl chitosan (CIVICS) and chitosan sulfates (CSS) with different molecular weight were modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3 -benzene-disulfo-chloride to give 12 kinds of new hydroxylbenzenesulfonailides derivatives of them. The preparation conditions of the derivatives were discussed in this paper, and their structures were characterized by FT-IR and C-13 NMR spectroscopy. The solubility of the derivatives was measured in the experiment. In addition, their antimicrobial activities against four bacteria and five crop-threatening pathogenic fungi were tested in the experiment. Besides, the rule and mechanism of their antibacterial activities were discussed in this paper. (C) 2009 Published by Elsevier B.V.
Resumo:
Three new kinds of 1,3,5-thiadiazine-2-thi one derivatives of chitosan with two different molecular weight (SATTCS1, SATTCS2, TITTCS1, TITTCS2, CITTCS1 and CITTCS2) have been prepared. Their structures were characterized by IR spectroscopy. The substitution degree of derivatives calculated by elemental analyses was 0.47, 0.42, 0.41, 0.38, 0.41 and 0.36, respectively. The result shows that substitution degree of derivatives was higher with lower molecular weight. The antioxidant activity was studied using an established system, such as bydroxyl radical scavenging, superoxide radical scavenging and reducing power. Antioxidant activity of the 1,3,5-thiadiazine-2-thione derivatives of chitosan were stronger than that of chitosans and antioxiclant activity of low molecular weight derivatives were stronger than that of high molecular weight derivatives. It is a potential antioxidant in vitro. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Sulfanilamide derivatives of chitosan (2-(4-acetamido-2-sulfanimide)-chitosan (HSACS, LSACS), 2-(4-acetamido-2-sulfanimide)-6-sulfo-chitosan (HSACSS, LSACSS) and 2-(4-acetamido-2-sulfanimide)-6-carboxymethyl-chitosan (HSACMCS, LSACMCS)) were prepared using different molecular weights of chitosan (CS), carboxymethyl chitosan (CMCS) and chitosan sulfates (CSS) reacted with 4-acetamidobenzene sulfonyl chloride in dimethylsulfoxide solution. The structures of the derivatives were characterized by FT-IR spectroscopy and elemental analysis, which showed that the substitution degree of sulfanilamide group of HSACS, HSACSS, HSACMCS, LSACS, LSACSS and LSACMCS were 0.623, 0.492, 0.515, 0.576, 0.463 and 0.477, respectively. The solubility of the derivatives (pH < 7.5) was higher than that of chitosan (pH < 6.5). The antifungal activities of the derivatives against Aiternaria solani and Phomopsis asparagi were evaluated based on the method of Jasso et al. in the experiment. The results indicated that all the prepared sulfanilamide derivatives had a significant inhibiting effect on the investigated fungi in the polymer concentration range from 50 to 500 mu g mL(-1). The antifungal activities of the derivatives increased with increasing the molecular weight, concentration or the substitution degree. The sulfanilamide derivatives of CS, CMCS and CSS show stronger antifungal activities than CS, CMCS and CSS. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E coli was 15.62 and 62.49 mu g/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50 - 500 mu g/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity. (c) 2007 Elsevier Ltd. All rights reserved.