998 resultados para Central Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de doctorado, Oceanografía ; 2004-2006

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrabasic rock samples collected from two areas of the crustal zone of the Mid-Atlantic Ridge (MAR): (1) 13-17°N (near the intersection of the ridge axis with the 15°20'N prime fracture zone), and (2) 33°40'N prime (the western intersection of the MAR crest with the Heis fracture zone) were objects of this study. Samples of peridotite and of plutonic and volcanic rocks associated with it were used to measure their Sm/Nd, 143Nd/144Nd, and 147Sm/144Nd ratios, which allowed to test time and genetic relationships between evolution of mantle material under the ridge crest and products of its magmatic activity. Results of this work proved ubiquitous discrepancy between melting degree values of extremely depleted mantle peridotites in the MAR area between 14°N and 16°N, obtained using petrologic and geochemical methods. This discrepancy suggests large-scale interaction between mantle material and magmatic melts and fluids enriched in incompatible elements or fluids. The results obtained suggest that repeated melting of the mantle under the axial MAR zone is an universal characteristic of magmatism in low-velocity spreading centers. The results of this study also proved the crestal MAR zone in the Central Atlantic region show distinct indications of isotope-geochemical segmentation of the mantle. It is suggested that the geochemically anomalous MAR mantle peridotite in the zone of the MAR intersection with the 15°20'N prime fracture zone can be interpreted as fragments of mantle substrate, foreign for the Atlantic mantle north of the equator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents materials on composition and texture of weakly serpentinized ultrabasic rocks from the western and eastern walls of the Markov Deep (5°30.6'-5°32.4'N) in the rift valley of the Mid-Atlantic Ridge. Predominant harzburgites with protogranular and porphyroclastic textures contain two major generations of minerals: the first generation composes the bulk of rocks and consists of Ol_89.8-90.4 + En_90.2-90.8 + Di_91.8 + Chr (Cr#32.3-36.6, Mg#67.2-70.0), while the second generation composes very thin branching veinlets and consists of PlAn_32-47 + Ol_74.3-77.1 + Opx_55.7-71.9 + Cpx_67.5 + Amph_53.7-74.2 + Ilm. Syndeformational olivine neoblasts in recrystallization zones are highly magnesian. Concentrations and covariations of major elements in harzburgites indicate that these rocks are depleted in mantle residues (high Mg# of minerals and whole-rock samples and low in CaO, Al2O3, and TiO2) that are significantly enriched in trace HFSE and REE (Zr, Hf, Y, LREE, and all REE). Mineralogy and geochemistry of harzburgites were formed by interaction of mantle residues with hydrous, strongly fractionated melts that impregnated them. Mineral composition of veinlets in harzburgites and mineralogical-geochemical characteristics of related plagiogranites and gabbronorites suggest that these plagiogranites were produced by melt residuals after crystallization of gabbronorites. Modern characteristics of harzburgites were shaped by the following processes: (i) partial melting of mantle material simultaneously with its subsolidus deformations, (ii) brittle-plastic deformations associated with cataclastic flow and recrystallization, and (iii) melt percolation along zones of maximal stress relief and interaction of this melt with magnesian mantle residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (d13C -24 to -29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes and intercepts of C-S regression lines however, are different for each site and all are different from regression lines for samples from modern anoxic marine sediments and from Black Sea cores. The organic-carbon-rich limestones on Hess Rise, the Mid-Pacific Mountains, and other plateaus and seamounts in the Pacific Ocean are not synchronous but do occur within the same general middle Cretaceous time period as organic-carbon-rich lithofacies elsewhere in the world ocean, particularly in the Atlantic Ocean. Strata of equivalent age in the deep basins of the Pacific Ocean are not rich in organic carbon, and were deposited in oxygenated environments. This observation, together with the evidence that the plateau sites were considerably shallower and closse to the equator during the middle Creataceous suggests that local tectonic and hydrographic conditions may have resulted in high surface-water productivity and the preservation of organic matter in an oxygen-deficient environment where an expanded mid-water oxygen minimum developed and impinged on elevated platforms and seamounts.