942 resultados para Censorship and translation
Resumo:
During central nervous system myelination, oligodendrocytes extend membrane processes towards an axonal contact site which is followed by ensheathment resulting in a compacted multilamellar myelin sheath. The formation of this axon-glial unit facilitates rapid saltatory propagation of action potentials along the axon and requires the synthesis and transport of copious amounts of lipids and proteins to the axon-glial contact site. Fyn is a member of the Src family of non receptor tyrosine kinases and inserted into the inner leaflet of the oligodendrocyte membrane by acylation. Fyn activity plays a pivotal role in the maturation of oligodendrocytes and the myelination process. It was suggested previously that Fyn kinase can be stimulated by binding of a neuronal ligand to oligodendroglial F3/ contactin, a glycosyl-phosphatidyl-inositol anchored immunoglobulin superfamily (IgSF) member protein. It could be shown here, that neuronal cell adhesion molecule L1 binds to oligodendrocytes in an F3-dependent manner and activates glial Fyn. In the search for downstream participants of this novel axon-glial signalling cascade, heterogeneous nuclear ribonucleoprotein (hnRNP) A2 was identified as a novel Fyn target in oligodendrocytes. HnRNP A2 was known to be involved in the localisation of translationally repressed myelin basic protein (MBP) mRNA by binding to a cis acting A2 response element (A2RE) present in the 3’ untranslated region. Transport of MBP mRNAs occurs in RNA-protein complexes termed RNA granules and translational repression during transport is achieved by hnRNP A2-mediated recruitment of hnRNP E1 to the granules. It could be shown here, that Fyn activity leads to enhanced translation of reporter mRNA containing a part of the 3’ UTR of MBP including the A2RE. Furthermore hnRNP E1 seems to dissociate from RNA granules in response to Fyn activity and L1 binding. These findings suggest a novel form of neuron- glial communication: Axonal L1 binding to oligodendroglial F3 activates Fyn kinase. Activated Fyn phosphorylates hnRNP A2 leading to removal of hnRNP E1 from RNA granules initiating the translation of MBP mRNA. MBP is the second most abundant myelin protein and mice lacking this protein show a severe hypomyelination phenotype. Moreover, the brains of Fyn knock out mice contain reduced MBP levels and are hypomyelinated. Hence, L1-mediated MBP synthesis via Fyn as a central molecule could be part of a regulatory mechanism required for myelinogenesis in the central nervous system.
Resumo:
Con il presente studio si è inteso analizzare l’impatto dell’utilizzo di una memoria di traduzione (TM) e del post-editing (PE) di un output grezzo sul livello di difficoltà percepita e sul tempo necessario per ottenere un testo finale di alta qualità. L’esperimento ha coinvolto sei studenti, di madrelingua italiana, del corso di Laurea Magistrale in Traduzione Specializzata dell’Università di Bologna (Vicepresidenza di Forlì). I partecipanti sono stati divisi in tre coppie, a ognuna delle quali è stato assegnato un estratto di comunicato stampa in inglese. Per ogni coppia, ad un partecipante è stato chiesto di tradurre il testo in italiano usando la TM all’interno di SDL Trados Studio 2011. All’altro partecipante è stato chiesto di fare il PE completo in italiano dell’output grezzo ottenuto da Google Translate. Nei casi in cui la TM o l’output non contenevano traduzioni (corrette), i partecipanti avrebbero potuto consultare Internet. Ricorrendo ai Think-aloud Protocols (TAPs), è stato chiesto loro di riflettere a voce alta durante lo svolgimento dei compiti. È stato quindi possibile individuare i problemi traduttivi incontrati e i casi in cui la TM e l’output grezzo hanno fornito soluzioni corrette; inoltre, è stato possibile osservare le strategie traduttive impiegate, per poi chiedere ai partecipanti di indicarne la difficoltà attraverso interviste a posteriori. È stato anche misurato il tempo impiegato da ogni partecipante. I dati sulla difficoltà percepita e quelli sul tempo impiegato sono stati messi in relazione con il numero di soluzioni corrette rispettivamente fornito da TM e output grezzo. È stato osservato che usare la TM ha comportato un maggior risparmio di tempo e che, al contrario del PE, ha portato a una riduzione della difficoltà percepita. Il presente studio si propone di aiutare i futuri traduttori professionisti a scegliere strumenti tecnologici che gli permettano di risparmiare tempo e risorse.
Resumo:
Following the internationalization of contemporary higher education, academic institutions based in non-English speaking countries are increasingly urged to produce contents in English to address international prospective students and personnel, as well as to increase their attractiveness. The demand for English translations in the institutional academic domain is consequently increasing at a rate exceeding the capacity of the translation profession. Resources for assisting non-native authors and translators in the production of appropriate texts in L2 are therefore required in order to help academic institutions and professionals streamline their translation workload. Some of these resources include: (i) parallel corpora to train machine translation systems and multilingual authoring tools; and (ii) translation memories for computer-aided tools. The purpose of this study is to create and evaluate reference resources like the ones mentioned in (i) and (ii) through the automatic sentence alignment of a large set of Italian and English as a Lingua Franca (ELF) institutional academic texts given as equivalent but not necessarily parallel (i.e. translated). In this framework, a set of aligning algorithms and alignment tools is examined in order to identify the most profitable one(s) in terms of accuracy and time- and cost-effectiveness. In order to determine the text pairs to align, a sample is selected according to document length similarity (characters) and subsequently evaluated in terms of extent of noisiness/parallelism, alignment accuracy and content leverageability. The results of these analyses serve as the basis for the creation of an aligned bilingual corpus of academic course descriptions, which is eventually used to create a translation memory in TMX format.
Resumo:
Central Eastern Europe, the research area this paper is concerned with, is a region characterized by a high diversity of languages and cultures. It is, at the same time, an area where political, cultural and social conflicts have emerged over time, nowadays especially in border zones, where people of different ethnic, cultural or linguistic background live. In this context, it is important for us researchers to get balanced interview data, and consequently we very often have to conduct interviews in several different languages and within changing cultural contexts. In order to avoid "communication problems" or even conflictual (interview) situations, which might damage the outcome of the research, we are thus challenged to find appropriate communication strategies for any of these situations. This is especially difficult when we are confronted with language or culture-specific terminology or taboo expressions that carry political meaning(s). Once the interview data is collected and it comes to translating and analysing it, we face further challenges and new questions arise. First of all, we have to decide what a good translation strategy would be. Many words and phrases that exist in one language do not have an exact equivalent in another. Therefore we have to find a solution for translating these expressions and concepts in a way that their meanings do not get "lost by translation". In this paper I discuss and provide insights to these challenges by presenting and discussing numerous examples from the region in question. Specifically, I focus on the deconstruction of the meaning of geographical names and politically loaded expressions in order to show the sensitivities of language, the difficulties of research in multilingual settings and with multilingual data as well as the strategies or "ways out" of certain dilemmas.
Resumo:
This introduction and translation is part of the research project International Constitutional Law. All amendments up to and including the 59th Amendment of 11th July 2012 have been translated and included into a consolidated edition. There have been no more amendments until today (8th October 2013).
Resumo:
Neuronal signaling requires that synaptic proteins be appropriately localized within the cell and regulated there. In mammalian neurons, polyribosomes are found not just in the cell body, but also in dendrites where they are concentrated within or beneath the dendritic spine. The α subunit of Ca2+-calmodulin-dependent protein kinase II (CaMKIIα) is one of only five mRNAs known to be present within the dendrites, as well as in the soma of neurons. This targeted subcellular localization of the mRNA for CaMKIIα provides a possible cell biological mechanism both for controlling the distribution of the cognate protein and for regulating independently the level of protein expression in individual dendritic spines. To characterize the cis-acting elements involved in the localization of dendritic mRNA we have produced two lines of transgenic mice in which the CaMKIIα promoter is used to drive the expression of a lacZ transcript, which either contains or lacks the 3′-untranslated region of the CaMKIIα gene. Although both lines of mice show expression in forebrain neurons that parallels the expression of the endogenous CaMKIIα gene, only the lacZ transcripts bearing the 3′-untranslated region are localized to dendrites. The β-galactosidase protein shows a variable level of expression along the dendritic shaft and within dendritic spines, which suggests that neurons can control the local biochemistry of the dendrite either through differential localization of the mRNA or variations in the translational efficiency at different sites along the dendrite.
Resumo:
Several volumes are photocopies.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.