995 resultados para Cell Separation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The isolation of subsets of Ag-specific T cells for in vitro and in vivo studies by FACS is compromised by the fact that the soluble MHC-peptide complexes and Abs used for staining, especially when combined, induce unwanted T cell activation and eventually apoptosis. This is especially a problem for CD8+ CTL, which are susceptible to activation-dependent cell death. In this study, we show that reversible MHC-peptide complexes (tetramers) can be prepared by conjugating MHC-peptide monomers with desthiobiotin (DTB; also called dethiobiotin) and multimerization by reaction with fluorescent streptavidin. While in the cold these reagents are stable and allow good staining, they rapidly dissociate in monomers at elevated temperatures, especially in the presence of free biotin. FACS cloning of Melan-A (MART-1)-specific CTL from a melanoma-infiltrated lymph node with reversible HLA-A2 Melan-A26-35 multimers yielded over two times more clones than when using the conventional biotin-containing multimers. CTL clones obtained by means of reversible multimers killed Melan-A-positive tumor cells more efficiently as compared with clones obtained with the stable multimers. Among the CTL obtained with the reversible multimers, but much less among those obtained with the stable multimers, a high proportion of clones exhibited high functional and physical avidity and died upon incubation with soluble MHC-peptide complexes. Finally, we show that Fab' of an anti-CD8 Ab can be converted in reversible DTB streptavidin conjugates the same way. These DTB reagents efficiently and reversibly stained murine and human CTL without affecting their viability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S.pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract: Chlorocebus aethiops is a species of non-human primate frequently used in biomedical research. Some research involves this species as an experimental model for various diseases and possible treatment with stem cells. The bone marrow is one of the main sources of these cells and provides easy access. The aim of this study was to standardize the protocol of collection and separation of bone marrow in C. aethiops. Ten animals were submitted to puncture of bone marrow with access to the iliac crest and cell separation by density gradient. The bone marrow of C. aethiops had an average of 97% viability. From the results achieved, we can conclude that C. aethiops is an excellent model to obtain and isolate mononuclear cells from bone marrow, fostering several studies in the field of cell therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent reports showing a decrease in sperm count in men have brought new concerns about male infertility. Animal models have been widely used to provide some relevant information about the human male gamete, and extrapolations are made to men and to the clinical context. The present study assesses one of the methods used for separation of germ cells of the adult rat testis, namely centrifugal elutriation followed by density gradients (Percoll®). This method was chosen since it presents the best results for cell purity in separating germ cells from the rat testis. A comparison between continuous and discontinuous Percoll® gradients was performed in order to identify the best type of gradient to separate the cells. Maximal cell purity was obtained for spermatocytes (81 ± 8.2%, mean ± SEM) and spermatids (84 ± 2.6%) using centrifugal elutriation followed by continuous Percoll® gradients. A significant difference in purity was observed between elongating spermatids harvested from continuous Percoll® gradients and from discontinuous gradients. Molecular analysis was used to assess cell contamination by employing specific probes, namely transition protein 2 (TP2), mitochondrial cytochrome C oxidase II (COX II), and sulfated glycoprotein 1 (SGP1). Molecular analysis of the samples demonstrated that morphological criteria are efficient in characterizing the main composition of the cell suspension, but are not reliable for identifying minimal contamination from other cells. Reliable cell purity data should be established using molecular analysis

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue P systems generalize the membrane structure tree usual in original models of P systems to an arbitrary graph. Basic opera- tions in these systems are communication rules, enriched in some variants with cell division or cell separation. Several variants of tissue P systems were recently studied, together with the concept of uniform families of these systems. Their computational power was shown to range between P and NP ? co-NP , thus characterizing some interesting borderlines between tractability and intractability. In this paper we show that com- putational power of these uniform families in polynomial time is limited by the class PSPACE . This class characterizes the power of many clas- sical parallel computing models

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activity of growing living bacteria was investigated using real-time and in situ rheology-in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus-strain COL and its isogenic cell wall autolysis mutant, RUSAL9-were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of the cultures of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the cultures of the two strains follows different and rich behaviors, with no counterpart in the optical density or in the population's colony-forming units measurements. While the viscosity of strain COL culture keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain culture decreases steeply, still in the exponential phase, remains constant for some time, and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviors, which were observed to be shear-stress-dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL culture, obtained with oscillatory shear, exhibit power-law behaviors whose exponents are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant culture have complex behaviors, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. Nevertheless, these behaviors reflect the bacteria growth stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary : Cancer stem cells (CSC) that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been demonstrated to date. Here, we .identify and characterize cancer stem cells in Ewing's sarcoma family tumors (ESPY), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in NOD/SCID mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic and chondrogenic lineages. Quantitative Real-Time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells (ET-CSC) and demonstration of their mesenchymal stem cell properties, a critical step toward a better biological understanding and rational therapeutic targeting of these tumors. Résumé : Des cellules souches tumorales avec des propriétés exclusives d'initiation tumorale ont récemment été identifiées dans différents types de cancers, permettant ainsi d'espérer le développement de thérapies plus efficaces. Cependant, l'existence de telles cellules dans les sarcomes, un sous-groupe de cancers d'origine mésenchymateuse très agressifs, n'a pas encore été démontrée. Dans ce travail de recherche, nous identifions et caractérisons des cellules souches tumorales dans le sarcome d'Ewing, une tumeur pédiatrique très agressive vraisemblablement dérivée de cellules souches mésenchymateuses (MSC). Afin de séparer des populations cellulaires dans des échantillons primaires de sarcome d'Ewing, nous avons utilisé des billes magnétiques couplées à des anticorps monoclonaux. Ceci nous a permis d'isoler une sous-population de cellules tumorales CD133+ qui ont la capacité d'initier et de maintenir la croissance tumorale dans des xénotransplantations en série effectuées dans des souris immunodéficientes NOD/SCID. Ces cellules reétablissent à chaque passage in vivo le phénotype de la tumeur d'origine ainsi que son organisation hiérarchique. En accord avec la plasticité des MSC, des tests de différentiation in vitro ont montré que les cellules CD133+ maintiennent la capacité de se différentier en adipocytes, ostéocytes et chondrocytes. Une analyse par PCR quantitative de gènes impliqués dans le maintien des cellules souches a montré que les cellules CD133+ expriment un niveau beaucoup plus élevé de OCT4 and NANOG que les cellules CD133-. En résumé, nos observations constituent la première identification de cellules souches tumorales dans le sarcome d'Ewing et démontrent leur propriété de cellules souches mésenchymateuses. Ceci constitue une étape clé vers une meilleure compréhension biologique et une meilleure approche thérapeutique de ces tumeurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of natural T cell responses against pathogens or tumors, as well as the assessment of new immunotherapy strategies aimed at boosting these responses, requires increasingly precise ex vivo analysis of blood samples. For practical reasons, studies are often performed using purified PBMC samples, usually cryopreserved. Here, we report on FACS analyses of peripheral blood T cells, performed by direct antibody staining of non-purified total blood. For comparison, fresh PBMC, purified by Ficoll, were analysed. Our results show that the latter method can induce a bias in subpopulation distribution, in particular of CD8+ T cells, and sometimes lead to inaccurate measurement of antigen specific CD8+ T cell responses. Direct analysis of total blood can be applied to longitudinal immuno-monitoring of T cell-based therapy. While the need to purify and cryopreserve PBMC for subsequent studies is obvious, the use of whole blood has the advantage of providing unbiased results and only small amounts of blood are used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: There is urgent need of a treatment for progressive multifocal leukoencephalopathy (PML), caused by the polyomavirus JC (JCV). To evaluate the rationale for immunotherapy of PML, we explored whether JCV-specific cytotoxic T lymphocytes (CTL) can penetrate the central nervous system (CNS). In addition, we studied the breadth of their T-cell receptor (TCR) repertoire, and sought to establish a reliable method to expand these cells in vitro. DESIGN AND METHODS: We enrolled 18 patients in this study, including 16 with proven or possible PML (15 HIV-positive and one HIV-negative), and two HIV-positive patients with other neurological diseases. Detection of JCV-specific CTL in the blood and the cerebrospinal fluid was performed by Cr release and tetramer staining assays in 15 patients. RESULTS: Of 11 PML patients with analyzable cerebrospinal fluid (CSF), two had no detectable JCV-specific CTL in the blood and CSF and died 3.7 and 7.2 months later. The nine remaining patients had an inactive course of PML and detectable JCV-specific CTL in the blood. In addition, four of them (44%) also had detectable JCV-specific CTL in the CSF. Both HIV-positive patients with OND had detectable JCV-specific CTL in the blood and one in the CSF. Using tetramer technology, we obtained highly enriched JCV-specific CTL lines that were able to kill target cells presenting JCV peptides. The breadth of the TCR repertoire was CTL epitope dependent. CONCLUSIONS: These results indicate that JCV-specific CTL are present in the CNS of PML patients and pave the way for an immune-based therapeutic approach.