994 resultados para Causal processes
Resumo:
The effect of additivity pretraining on blocking has been taken as evidence for a reasoning account of human and animal causal learning. If inferential reasoning underpins this effect, then developmental differences in the magnitude of this effect in children would be expected. Experiment 1 examined cue competition effects in children's (4- to 5-year-olds and 6- to 7-year-olds) causal learning using a new paradigm analogous to the food allergy task used in studies of human adult causal learning. Blocking was stronger in the older than the younger children, and additivity pretraining only affected blocking in the older group. Unovershadowing was not affected by age or by pretraining. In experiment 2, levels of blocking were found to be correlated with the ability to answer questions that required children to reason about additivity. Our results support an inferential reasoning explanation of cue competition effects. (c) 2012 APA, all rights reserved.
Resumo:
According to a higher order reasoning account, inferential reasoning processes underpin the widely observed cue competition effect of blocking in causal learning. The inference required for blocking has been described as modus tollens (if p then q, not q therefore not p). Young children are known to have difficulties with this type of inference, but research with adults suggests that this inference is easier if participants think counterfactually. In this study, 100 children (51 five-year-olds and 49 six- to seven-year-olds) were assigned to two types of pretraining groups. The counterfactual group observed demonstrations of cues paired with outcomes and answered questions about what the outcome would have been if the causal status of cues had been different, whereas the factual group answered factual questions about the same demonstrations. Children then completed a causal learning task. Counterfactual pretraining enhanced levels of blocking as well as modus tollens reasoning but only for the younger children. These findings provide new evidence for an important role for inferential reasoning in causal learning.
Resumo:
A sample of 99 children completed a causal learning task that was an analogue of the food allergy paradigm used with adults. The cue competition effects of blocking and unovershadowing were assessed under forward and backward presentation conditions. Children also answered questions probing their ability to make the inference posited to be necessary for blocking by a reasoning account of cue competition. For the first time, children's working memory and general verbal ability were also measured alongside their causal learning. The magnitude of blocking and unovershadowing effects increased with age. However, analyses showed that the best predictor of both blocking and unovershadowing effects was children's performance on the reasoning questions. The magnitude of the blocking effect was also predicted by children's working memory abilities. These findings provide new evidence that cue competition effects such as blocking are underpinned by effortful reasoning processes.
Resumo:
This study uses a Granger causality time series modeling approach to quantitatively diagnose the feedback of daily sea surface temperatures (SSTs) on daily values of the North Atlantic Oscillation (NAO) as simulated by a realistic coupled general circulation model (GCM). Bivariate vector autoregressive time series models are carefully fitted to daily wintertime SST and NAO time series produced by a 50-yr simulation of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). The approach demonstrates that there is a small yet statistically significant feedback of SSTs oil the NAO. The SST tripole index is found to provide additional predictive information for the NAO than that available by using only past values of NAO-the SST tripole is Granger causal for the NAO. Careful examination of local SSTs reveals that much of this effect is due to the effect of SSTs in the region of the Gulf Steam, especially south of Cape Hatteras. The effect of SSTs on NAO is responsible for the slower-than-exponential decay in lag-autocorrelations of NAO notable at lags longer than 10 days. The persistence induced in daily NAO by SSTs causes long-term means of NAO to have more variance than expected from averaging NAO noise if there is no feedback of the ocean on the atmosphere. There are greater long-term trends in NAO than can be expected from aggregating just short-term atmospheric noise, and NAO is potentially predictable provided that future SSTs are known. For example, there is about 10%-30% more variance in seasonal wintertime means of NAO and almost 70% more variance in annual means of NAO due to SST effects than one would expect if NAO were a purely atmospheric process.
Resumo:
The effect of episodic drought on dissolved organic carbon (DOC) dynamics in peatlands has been the subject of considerable debate, as decomposition and DOC production is thought to increase under aerobic conditions, yet decreased DOC concentrations have been observed during drought periods. Decreased DOC solubility due to drought-induced acidification driven by sulphur (S) redox reactions has been proposed as a causal mechanism; however evidence is based on a limited number of studies carried out at a few sites. To test this hypothesis on a range of different peats, we carried out controlled drought simulation experiments on peat cores collected from six sites across Great Britain. Our data show a concurrent increase in sulphate (SO4) and a decrease in DOC across all sites during simulated water table draw-down, although the magnitude of the relationship between SO4 and DOC differed between sites. Instead, we found a consistent relationship across all sites between DOC decrease and acidification measured by the pore water acid neutralising capacity (ANC). ANC provided a more consistent measure of drought-induced acidification than SO4 alone because it accounts for differences in base cation and acid anions concentrations between sites. Rewetting resulted in rapid DOC increases without a concurrent increase in soil respiration, suggesting DOC changes were primarily controlled by soil acidity not soil biota. These results highlight the need for an integrated analysis of hydrologically driven chemical and biological processes in peatlands to improve our understanding and ability to predict the interaction between atmospheric pollution and changing climatic conditions from plot to regional and global scales.
Resumo:
To investigate the relative importance of instream nutrient spiralling and wetland transformation processes on surface water quality, total nitrogen (TN) and total phosphorus (TP) concentrations in a 200 m reach of the River Lambourn in the south-east of England were monitored over a 2-year period. In addition, the soil pore water nutrient dynamics in a riparian ecosystem adjacent to the river were investigated. Analysis of variance indicated that TN, TP and suspended sediment concentrations recorded upstream of the wetland were statistically significantly higher (P<0.05) than those downstream of the site. Such results suggest that the wetland was performing a nutrient retention function. Indeed, analysis of soil pore waters within the site show that up to 85% of TN and 70% of TP was removed from water flowing through the wetland during baseflow conditions, thus supporting the theory that the wetland played an important role in the regulation of surface water quality at the site. However, the small variations observed (0.034 mg TN l-1 and 0.031 mg P l-1) are consistent with the theory of nutrient spiralling suggesting that both instream and wetland retention processes have a causal effect on surface water quality.
Resumo:
The operator S in Fock space which describes the scattering and particle production processes in an external time-dependent electromagnetic potential A can be constructed from the one-particle S-matrix up to a physical phase λ[A]. In this work we determine this phase for QED in (2 + 1) dimensions by means of causality and show that no ultraviolet divergences arise, in contrast to the usual formalism of QED3.
Resumo:
B. F. Skinner deu início ao behaviorismo radical, enquanto filosofia de uma ciência do comportamento, e reuniu os argumentos experimentais e teóricos que fundamentaram tal ciência. A proposta skinneriana distinguiu-se da psicologia da primeira metade do século XX por instituir o monismo físico como visão de homem e recomendar a abordagem de respostas abertas e encobertas no contexto de relações indivíduoambiente. No entanto, a adoção do modo causal de seleção por conseqüências para a explicação do comportamento pode ser tida como controversa no âmbito de análise de fenômenos emocionais, por estes apresentarem componentes operantes, mas também respondentes. Tendo em vista que a seleção ao nível filogenético permite a compreensão do estabelecimento de relações respondentes incondicionadas, objetivou-se analisar até que ponto um modelo selecionista permite a explicação de relações respondentes condicionadas, nos casos referentes a fenômenos emocionais. A investigação de elaborações da análise do comportamento resultou na proposição de um modelo interpretativo de fenômenos emocionais por meio de inter-relações entre processos respondentes e operantes. A coerência interna do sistema explicativo skinneriano é preservada por manter-se o pressuposto básico de que, em se tratando da ontogênese, relações historicamente estabelecidas com o ambiente explicam a ocorrência de respostas abertas, encobertas, respondentes, operantes ou com ambos os componentes. Considerando que clareza conceitual tende a ser um pré-requisito para o desenvolvimento de alternativas de intervenção, contrastou-se o modelo interpretativo proposto ao contexto de realização de análises funcionais na literatura da análise do comportamento. Preliminarmente, tal modelo demonstrou ser uma ferramenta útil, na medida em que favorece a compreensão de diferentes funções das variáveis que participam das relações comportamentais em foco, de uma perspectiva contextualizada e histórica.
Resumo:
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding-and in management decisions-about how biodiversity is related to the provision of multiple ecosystem services.
Resumo:
Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.
Resumo:
The present study attempted to examine the causal relationships among changes in automatic thoughts, dysfunctional attitudes, and depressive symptoms in a 12-week group cognitive behavior therapy (GCBT) program for depression. In all, 35 depressed patients attending the GCBT program were monitored with the Automatic Thoughts Questionnaire, Dysfunctional Attitudes Scale, and Beck Depression Inventory at the pre-treatment, 4th and 8th sessions, and post-treatment. The results were as follows: (1) GCBT reduces negative cognitions; (2) changes in automatic thoughts and dysfunctional attitudes lead to change in depressive symptoms; and (3) automatic thoughts play a mediating role between dysfunctional attitudes and depression. The findings taken as a whole support the Causal Cognition Model of depression. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Parental divorce is associated with problematic offspring adjustment, but the relation may be due to shared genetic or environmental factors. One way to test for these confounds is to study offspring of twins discordant for divorce. The current analyses used this design to separate the mechanisms responsible for the association between parental divorce, experienced either before or after the age of 16, and offspring well-being. The results were consistent with a causal role of divorce in earlier initiation of sexual intercourse and emotional difficulties, in addition to a greater probability of educational problems, depressed mood, and suicidal ideation. In contrast, the increased risk for cohabitation and earlier initiation of drug use was explained by selection factors, including genetic confounds.