978 resultados para Categorical data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When choosing among models to describe categorical data, the necessity to consider interactions makes selection more difficult. With just four variables, considering all interactions, there are 166 different hierarchical models and many more non-hierarchical models. Two procedures have been developed for categorical data which will produce the "best" subset or subsets of each model size where size refers to the number of effects in the model. Both procedures are patterned after the Leaps and Bounds approach used by Furnival and Wilson for continuous data and do not generally require fitting all models. For hierarchical models, likelihood ratio statistics (G('2)) are computed using iterative proportional fitting and "best" is determined by comparing, among models with the same number of effects, the Pr((chi)(,k)('2) (GREATERTHEQ) G(,ij)('2)) where k is the degrees of freedom for ith model of size j. To fit non-hierarchical as well as hierarchical models, a weighted least squares procedure has been developed.^ The procedures are applied to published occupational data relating to the occurrence of byssinosis. These results are compared to previously published analyses of the same data. Also, the procedures are applied to published data on symptoms in psychiatric patients and again compared to previously published analyses.^ These procedures will make categorical data analysis more accessible to researchers who are not statisticians. The procedures should also encourage more complex exploratory analyses of epidemiologic data and contribute to the development of new hypotheses for study. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When missing data occur in studies designed to compare the accuracy of diagnostic tests, a common, though naive, practice is to base the comparison of sensitivity, specificity, as well as of positive and negative predictive values on some subset of the data that fits into methods implemented in standard statistical packages. Such methods are usually valid only under the strong missing completely at random (MCAR) assumption and may generate biased and less precise estimates. We review some models that use the dependence structure of the completely observed cases to incorporate the information of the partially categorized observations into the analysis and show how they may be fitted via a two-stage hybrid process involving maximum likelihood in the first stage and weighted least squares in the second. We indicate how computational subroutines written in R may be used to fit the proposed models and illustrate the different analysis strategies with observational data collected to compare the accuracy of three distinct non-invasive diagnostic methods for endometriosis. The results indicate that even when the MCAR assumption is plausible, the naive partial analyses should be avoided.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Categorical data cannot be interpolated directly because they are outcomes of discrete random variables. Thus, types of categorical variables are transformed into indicator functions that can be handled by interpolation methods. Interpolated indicator values are then backtransformed to the original types of categorical variables. However, aspects such as variability and uncertainty of interpolated values of categorical data have never been considered. In this paper we show that the interpolation variance can be used to map an uncertainty zone around boundaries between types of categorical variables. Moreover, it is shown that the interpolation variance is a component of the total variance of the categorical variables, as measured by the coefficient of unalikeability. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many seemingly disparate approaches for marginal modeling have been developed in recent years. We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the proposed copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.