985 resultados para Cardiovascular Regulation
Resumo:
The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostral ventrolateral medulla are 2 important brainstem nuclei, and they play pivotal roles in autonomic cardiovascular regulation. Angiotensin II is one of the neurotransmitters involved in the processing of the cardiovascular reflexes within the brainstem. It is well-known that one of the mechanisms by which angiotensin II exerts its effect is via the activation of pathways that generate reactive oxygen species (ROS). In the central nervous system, ROS are reported to be involved in several pathological diseases such as hypertension, heart failure and sleep apnea. However, little is known about the role of ROS in the processing of the cardiovascular reflexes within the brainstem. The present review mainly discussed some recent findings documenting a role for ROS in the processing of the baroreflex and the peripheral chemoreflex in the brainstem.
Resumo:
OBJECTIVE: ,,,,,Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. ,,,, ,,,, ,,,,,METHODS: ,,,,,Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm). The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (50 μg/kg, bolus). Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL) into the 4th V. ,,,, ,,,, ,,,,,RESULTS: ,,,,,Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05) to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05). ,,,, ,,,, ,,,,,CONCLUSION: ,,,,,Administration of a catalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.
Resumo:
In previous studies using bilateral carotid occlusion in conscious freely moving rats we suggested that aortic baroreceptors may play a more important role in the regulation of hindlimb than in renal and mesenteric vascular resistances. In the present study we performed electrical stimulation of the aortic baroreceptor nerve and analyzed the changes in mean arterial pressure and in hindlimb, renal, and mesenteric vascular resistances. All the experiments were performed under urethan anesthesia. Unilateral electrical stimulation (3 V, 2 ms, 50 Hz) of the aortic baroreceptor nerve produced a fall in arterial pressure (-27 +/- 3 mmHg) and an important reduction in hindlimb vascular resistance (-43 +/- 5%), with an increase in renal (+3 +/- 14%) and mesenteric (+48 +/- 12%) vascular resistances. Similar changes in arterial pressure as well as in the resistance of the three vascular beds studied were also observed during electrical stimulation of the aortic baroreceptor nerve in rats with bilateral carotid baroreceptor denervation or in rats treated with methylatropine. The data obtained with electrical stimulation indicated that aortic baroreceptors play a more important role in the regulation of blood flow in hindlimb than in renal and mesenteric vascular beds.
Resumo:
In this study we investigated the influence of electrolytic lesion or of opioid agonist injections into the lateral hypothalamus (LH) on the dipsogenic, natriuretic, kaliuretic, antidiuretic, presser, and bradycardic effects of cholinergic stimulation of the medial septal area (MSA) in rats. Sham- and LH-lesioned male Holtzman rats received a stainless steel cannula implanted into the LH. Other groups of rats had cannulas implanted simultaneously into the MSA and LH. Carbachol (2 nmol) injection into the MSA induced water intake, presser, and bradycardic responses. LH lesion reduced all of these effects (1-3 and 15-18 days). Previous injection of synthetic opiate agonist, FK-33824 (100 ng), into the LH reduced the water intake, natriuresis, kaliuresis, and presser responses induced by carbachol injected into the MSA. These data show that both electrolytic lesion or injection of an opiate agonist in the LH reduces the fluid-electrolyte and cardiovascular responses to cholinergic activation of the MSA. The involvement of LH with central excitatory and inhibitory mechanisms related to fluid-electrolytic and cardiovascular control is suggested.
Resumo:
The purpose of the present investigation was to examine the effects of unilateral and bilateral jugular vein occlusion by temporary surgical ligature on the heart rate and arterial and venous blood pressure in sedentary horses during progressive treadmill exercise. Six horses performed three exercise tests (ET). ET1, considered the control, was performed in horses without jugular occlusions. ET2 and ET3 were performed with unilateral and bilateral occlusion by temporary surgical ligature of the jugular veins, respectively. Heart rate, arterial pressure, and pressure of the occluded jugular vein were evaluated. Clinically, the horses presented apathy, head edema, congested mucous membranes, increased capillary refill time, and dysphagia. These signs were observed with the unilateral jugular vein occlusion and became more evident with the bilateral occlusion. Comparing ETs, no differences were observed in heart rate. However, jugular occlusions promoted a decrease in the mean arterial pressure and a severe increase in jugular pressure. Head edema caused by the jugular vein occlusion in the horses could interfere with the autonomic cardiovascular regulation of arterial blood pressure during exercise, likely leading to an impairment of tissue perfusion. Jugular occlusion, even unilateral, also causes severe head venous congestion, leading to venous hypertension that was aggravated by exercise, which could risk development of cerebral edema and neurological damage. The present results obtained from sedentary horses are preliminary data that lead us to suggest that sport horses presenting jugular occlusive thrombophlebitis, even unilateral, may be prevented from performing athletic activities. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have previously reported that stimulation of alpha-1 adrenoceptors by noradrenaline (NA) injected into the lateral septal area (LSA) of anaesthetized rats causes pressor and bradycardic responses that are mediated by acute vasopressin release into the circulation through activation of the paraventricular nucleus (PVN). Although the PVN is the final structure of this pathway, the LSA has no direct connections with the PVN, suggesting that other structures may connect these areas. To address this issue, the present study employed c-Fos immunohistochemistry to investigate changes caused by NA microinjection into the LSA in neuronal activation in brain structures related to systemic vasopressin release. NA microinjected in the LSA caused pressor and bradycardic responses, which were blocked by intraseptal administration of alpha-1 adrenoceptor antagonist (WB4101, 10 nmol/200 nL) or systemic V-1 receptor antagonist (dTyr(CH2)5(Me)AVP, 50 mu g/kg). NA also increased c-Fos immunoreactivity in the prelimbic cortex (PL), infralimbic cortex (IL), dorsomedial periaqueductal gray (dmPAG), bed nucleus of the stria terminalis (BNST), PVN, and medial amygdala (MeA). No differences in the diagonal band of Broca, cingulate cortex, and dorsolateral periaqueductal gray (dlPAG) were found. Systemic administration of the vasopressin receptor antagonist dTyr AVP (CH2)5(Me) did not change the increase in c-Fos expression induced by intra-septal NA. This latter effect, however, was prevented by local injection of the alpha-1 adrenoceptor antagonist WB4101. These results suggest that areas such as the PL, IL, dmPAG, BNST, MeA, and PVN could be part of a circuit responsible for vasopressin release after activation of alpha-1 adrenoceptors in the LSA.
Resumo:
Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.
Resumo:
The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the abundant literature clearly demonstrating the ability of SFO neurons to sense and respond to a plethora of circulating signals that influence various physiological systems, investigation of how simultaneously sensed signals interact and are integrated in the SFO is lacking. In this study, we use patch clamp techniques to investigate how the traditionally classified ‘cardiovascular’ hormone angiotensin II (ANG), ‘metabolic’ hormone cholecystokinin (CCK) and ‘metabolic’ signal glucose interact and are integrated in the SFO. Sequential bath-application of CCK (10nM) and ANG (10nM) onto dissociated SFO neurons revealed that: 63% of responsive SFO neurons depolarized to both CCK & ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypo-, normo- or hyperglycemic conditions for a minimum of 24 hours and comparing the proportions of responses to ANG (n=55) or CCK (n=83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (X2, p<0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (X2, p<0.01). These data demonstrate that SFO neurons excited by CCK are also excited by ANG, suggesting that CCK may influence fluid intake or blood pressure via the SFO, complementary to the well-understood actions of ANG at this site. Additionally, the demonstration that glucose environment affects the responsiveness of neurons to both these hormones highlights the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals to affect transmission of information from the circulation to the brain, which has important implications for this structure’s critical role regulation of autonomic function.
Resumo:
Pré-eclâmpsia (PE), uma síndrome sistêmica da gestação caracterizada por proteinúria e hipertensão, está associada a uma significativa mortalidade tanto materna quanto fetal. Eentretanto, sua fisiopatologia ainda não é totalmente compreendida. Apesar de um expressivo aumento da atividade do sistema renina-angiotensina (SRA) na gestação normal, a pressão arterial não aumenta. Além disso, a redução da pressão de perfusão intra-uterina promove um aumento na liberação de espécies reativas de oxigênio que podem contribuir para a hipertensão na gestação. Dessa forma, o objetivo deste trabalho foi estudar o papel do SRA vascular, assim como, do estresse oxidativo plasmático, cardiorenal e placentário para a regulação cardiovascular materna em ratas normotensas e em modelo de PE induzida por L-NAME. Foi observado um aumento da pessão arterial em animais que receberal L-NAME. As ratas grávidas + L-NAME apresentaram um menor ganho de massa corporal durante a gestação, menor múmero de filhotes vivos, maior número de abortos, menor massa placentária total e fetos com menor massa corporal. Foi observada uma redução na resposta vasodilatadora induzida por acetilcolina (ACh) e angiotensina (Ang) II, aumento na resposta vasodilatadora induzida por nitroglicerina (NG) e aumento na resposta vasoconstritora induzida por fenilefrina (Phe) e Ang II em LAM de ratas grávida e não grávidas que receberam L-NAME. Não foi observada diferença na expressão dos receptores AT1 e AT2 e das enzimas ECA, ECA2 e eNOS. Foi observado um aumento na concentração plasmática de renina e bradicinina (BK) em ratas grávidas + L-NAME e uma redução na concentração de Ang 1-7. As ratas grávidas e grávidas + L-NAME apresentaram um aumento nos níveis séricos de estradiol. Os níveis de malondialdeído e carbonilação de proteínas estava aumentados e a atividade das enzimas antioxidantes SOD e GPx estavam reduzidas em ratas grávidas e não grávidas que receberam L-NAME. A atividade da CAT não apresentou diferença entre os grupos. Em conclusão, uma redução na vasodilatação induzida pela Ang II associada a um aumento da vasoconstrição promovida por este peptídeo, sugerem uma contribuição do SRA no desenvolvimento das complicações características da PE observadas no modelo experimental de PE induzido por L-NAME. Do mesmo modo, a peroxidação lipídica e oxidação de proteínas aumentadas, assim como, as atividades enzimáticas antioxidantes reduzidas sugerem a contribuição de uma defesa antioxidante comprometida e um dano oxidativo aumentado para o desenvolvimento da hipertensão e disfunção endotelial, aumento da mortalidade fetal e retardo do crescimento intra-uterino observados no modelo de PE estudado.
Resumo:
Two peptides with substance-P-like immunoreactivity were isolated in pure form from an extract of the brain of the elasmobranch fish, Scyliorhinus canicula (european common dogfish). One peptide was identical to scyliorhinin I, previously identified in dogfish intestine, and the second was the undecapeptide Lys-Pro-Arg-Pro-Gly-Gln-Phe-Phe-Gly-Leu-Met-CONH2 which is structurally similar to mammalian substance P Scyliorhinin II or a peptide analogous to mammalian neurokinin A were not detected in the extract. Synthetic dogfish substance P ([Lys1, Arg3, Gly5]substance P) was approximately threefold more potent than mammalian substance P (K(d) = 0.21 +/- 0.11 nM versus K(d)= 0.74 +/- 0.17 nM; mean +/- SD; n = 6) in inhibiting the binding of I-125-labelled substance P to neurokinin (NK1) receptors in rat submandibular gland membranes. The vasodilator action of tachykinins in mammals is mediated primarily through interaction with NK1 receptors. Bolus intravenous injections of [Lys1, Arg3, Gly5]substance P (100 pmol) and scyliorhinin I (100 pmol) produced appreciable (>4 kPa) decreases in arterial blood pressure in the rat whereas intravenous injections of up to 5 nmol of the peptides into conscious, unrestrained dogfish produced no change in arterial blood pressure, pulse amplitude or heart rate. Injections of greater amounts of the peptides (10-50 nmol) produced a slight increase (400-667 Pa) in blood pressure. The data indicate that mammalian-type NK1 tachykinin receptors are not involved in cardiovascular regulation in elasmobranch fish.
Resumo:
Background: Ang II plays a major role in cardiovascular regulation. Recently, it has become apparent that vascular superoxide anion may play an important role in hypertension development. Treatment with antisense NAD(P)H oxidase or SOD decreased BP in Ang II-infused rats. Wang et al recently reported mice which lack one of the subunits of NAD(P)H oxidase developed hypertension at a much lower extent when compared to the wild type animals infused with Ang II, indicating that superoxide anion contributes to elevation in BP in the Ang II-infused hypertensive model. In the Ang II-infused hypertensive model, altered reactivity of blood vessels is often associated with the elevation of systolic blood pressure. We have observed abnormal tension development and impaired endothelium-dependent relaxation in the isolated aorta of Ang II-infused and DOCA-salt hypertensive rats. Recently, several other cellular signal molecules, including ERK1I2 and PI3K, have been determined to play important roles in the regulation of smooth muscle contraction and relaxation. ERKl/2 and PI3K pathways are also reported to contribute to Ang II induced cell growth, hypertrophy, remodeling and contraction. Moreover, these signaling pathways have shown ROS-sensitive properties. Therefore, the aim of the present study is to investigate the roles of ERKl12 and PI3K in vascular oxidative stress, spontaneous tone and impaired endothelium relaxation in Ang II-infused hypertensive model. Hypothesis: We hypothesize that the activation of ERKl12 and PI3K are elevated in response to an Ang II infusion for 6 days. The elevated activation of phospho-ERKl/2 and PI3K mediated the increased level of vascular superoxide anion, the abnormal vascular contraction and impaired endothelium-dependent vascular relaxation in Ang II-infused hypertensive rats. Methods: Vascular superoxide anion level is measured by lucigenin chemiluminescence. Spontaneous tone and ACh-induced endothelium-dependent relaxation was measured by isometric tension recording in organ chamber. The activity of ERK pathway will be measured by its Western blot of phosphorylation of ERK. PI3K activity was evaluated indirectly by Western blot of the phosphorylation of PDKl, a downstream protein of PI3K signaling pathway. The role of each pathway was also addressed via comparing the responses to the specific inhibitors. Results: Superoxide anion was markedly increased in the isolated thoracic aorta from Ang II-infused rats. There was spontaneous tone developed in rings from Ang II-induced hypertensive but not sham-operated normotensive rats. ACh-induced endothelium-dependent relaxation function is impaired in Ang II-infused hypertensive rats. Superoxide dismutase and NAD(P)H oxidase inhibitor, apocynin, inhibited the abnormal spontaneous tone and ameliorated impaired endothelium-dependent relaxation. The expression of phopho-ERKII2 was enhanced in Ang II-infused rats, indicating the activity of ERK1I2 could be increased. MEK1I2 inhibitors, PD98059 and U126, but not their inactive analogues, SB203580 and U124, significantly reduced the vascular superoxide anion in aortas from Ang II-infused rats. The MEK1I2 inhibitors reduced the spontaneous tone and improved the impaired endothelium-dependent relaxation in aorta of hypertension. These findings supported the role of ERKII2 signaling pathway in vascular oxidative stress, spontaneous tone and impaired endothelium-dependent relaxation in Ang II-infused hypertensive rats. The amount of phospho-PDK, a downstream protein of PI3K was increased in Ang II rats indicating the activity of PI3K activity was elevated. Strikingly, PI3K significantly inhibited the increase of superoxide anion level, abnormal spontaneous tone and restored endothelium-dependent relaxation in Ang II-infused hypertensive rats. These findings indicated the important role of PI3K in Ang II-infused hypertensive rats. Conclusion: ERKII2 and PI3K signaling pathways are sustained activated in Ang II-infused hypertensive rats. The activated ERKII2 and PI3K mediate the increase of vascular superoxide anion level, vascular abnormal spontaneous tone and impaired endothelium-dependent relaxation.
Resumo:
Quatre microélectrodes ont été insérées dans le ganglion stellaire gauche (GS) de préparations canines in vivo pour évaluer la décharge des potentiels d’action dans les neurones situés dans ce ganglion périphérique durant un état cardiovasculaire stable et suivant des injections systémiques et locales de nicotine. Durant les périodes de contrôle, des changements mineurs ont été observés dans la pression artérielle systolique, dans le rythme cardiaque et dans le temps de conduction atrio-ventriculaire. L’activité générée par les neurones du GS est demeurée relativement constante à l’intérieure de chaque chien, mais variait entre les préparations. L’administration de nicotine systémique a altéré les variables physiologiques et augmenté l’activité neuronale. Même si différents changements au niveau des variables physiologiques ont été observés entre les animaux, ces changements demeuraient relativement constants pour un même animal. La dynamique de la réponse neuronale était similaire, mais l’amplitude et la durée variaient entre et au sein des chiens. L’injection de nicotine dans une artère à proximité du GS a provoqué une augmentation marquée des potentiels d’action sans faire changer les variables physiologiques. La technique d’enregistrement permet donc de suivre le comportement de multiples populations de neurones intrathoraciques situés dans le GS. La relation entre l’activation neuronale du GS et les changements physiologiques sont stables pour chaque chien, mais varient entre les animaux. Cela suggère que le poids relatif des boucles de rétroaction impliquées dans la régulation cardiovasculaire peut être une caractéristique propre à chaque animal.
Resumo:
Les kinines agissent sur deux types de récepteurs couplés aux protéines G, nommés B1 et B2, lesquels jouent un rôle important dans le contrôle cardiovasculaire, la nociception et l’inflammation. Nous considérons l’hypothèse que le récepteur B1 des kinines est induit et contribue aux complications diabétiques, incluant l’hypertension artérielle, les polyneuropathies sensorielles, l’augmentation du stress oxydatif vasculaire, l’inflammation vasculaire et l’obésité chez le rat traité au D-glucose (10% dans l’eau de boisson) pendant 8 ou 12 semaines. Dans ce modèle de résistance à l’insuline, nous avons évalué les effets d’un traitement pharmacologique d’une semaine avec un antagoniste du récepteur B1 des kinines, le SSR240612 (10 mg/kg/jr). Les résultats montrent que le SSR240612 renverse l’hypertension, l’allodynie tactile et au froid, la production de l’anion superoxyde et la surexpression de plusieurs marqueurs inflammatoires dans l’aorte (iNOS, IL-1β, macrophage (CD68, CD11), ICAM-1, E-selectine, MIF ainsi que le B1R) et dans les adipocytes (iNOS, IL-1β, TNF-α et macrophage CD68). De plus, le SSR240612 corrige la résistance à l’insuline, les anomalies du profil lipidique plasmatique et le gain de poids et de masse adipeuse. Ces données supportent l’implication des kinines dans les complications diabétiques dans un modèle animal de résistance à l’insuline et suggèrent que le récepteur B1 est une cible thérapeutique potentielle dans le diabète et l’obésité.