49 resultados para Capuchins
Resumo:
O forrageamento é uma das principais atividades de primatas neotropicais em ambiente natural e consome grande parte do tempo diário. No ambiente de vida livre os macacos-prego podem gastar até 80% do seu tempo se deslocando e forrageando. No cativeiro, porém, não é necessário nenhum esforço dos animais para encontrar e preparar o alimento para o consumo. Portanto, a oportunidade de expressar atividades de forrageio fica praticamente excluída. O principal objetivo deste trabalho foi criar e avaliar a efetividade de uma ferramenta de enriquecimento ambiental denominada de “painel de cuia”, com a função de dificultar o acesso dos macacos-prego ao alimento, aumentando o tempo para alcançar o alimento. As observações foram realizadas em quatro contextos diferentes, sendo um na parte da manhã e três pela parte, utilizando o método de animal focal. As durações relativas de cada evento comportamental foram comparadas na ausência e presença do enriquecimento. Foi encontrado que o cuieiro estendeu o tempo de forrageamento, funcionado como instrumento de enriquecimento ambiental. Foi observado também uma considerável redução nos comportamentos anormais, ao passo que a manipulação e a procura por alimento consumiram muito mais tempo.
Resumo:
Quando colocamos um animal em cativeiro, limitamos suas ações, assumindo o controle de boa parte das variáveis que atuam sobre um ambiente restrito. Essas variáveis, apesar de suprirem as necessidades básicas dos animais, tem o potencial de ser extremamente previsíveis e, por conseguinte, estressantes. Enriquecimento ambiental pode ser um dos mais importantes avanços na área de saúde animal em cativeiro nos últimos tempos, elevando os parâmetros psicológicos e fisiológicos de bem-estar, suprimidos pelo cativeiro. O principal objetivo deste trabalho foi criar e verificar a efetividade de um equipamento de enriquecimento ambiental denominado “roleta”, com a função de minimizar os efeitos danosos do cativeiro a dois macacos-prego, ao aumentar o tempo dedicado às atividades de forrageamento, aproximando seu orçamento de atividades àquele pertinente aos animais em vida livre. As observações foram realizadas pelo método de amostragem instantânea, em cinco etapas: 1) pré-intervenção, 2) D5, 3) D10, 4) D15 e 5) pós-intervenção, sendo, posteriormente, comparadas longitudinalmente. Os dados demonstram a efetividade da roleta como item enriquecedor do ambiente, uma vez que a frequência de comportamentos associados à exploração e deslocamento sofreu incremento ao longo das intervenções – com exceção à D10, que oportunamente será reavaliada – mantendo-se frequência média de forrageamento próxima ao esperado em animais de vida livre (Rímoli, 2001) ainda nas observações pós-intervenção, em detrimento da frequência de comportamentos considerados anormais ou estereotipados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wild bearded capuchin monkeys, Cebus libidinosus, use stone tools to crack palm nuts to obtain the kernel. In five experiments, we gave 10 monkeys from one wild group of bearded capuchins a choice of two nuts differing in resistance and size and/or two manufactured stones of the same shape, volume and composition but different mass. Monkeys consistently selected the nut that was easier to crack and the heavier stone. When choosing between two stones differing in mass by a ratio of 1.3:1, monkeys frequently touched the stones or tapped them with their fingers or with a nut. They showed these behaviours more frequently before making their first selection of a stone than afterward. These results suggest that capuchins discriminate between nuts and between stones, selecting materials that allow them to crack nuts with fewer strikes, and generate exploratory behaviours to discriminate stones of varying mass. In the final experiment, humans effectively discriminated the mass of stones using the same tapping and handling behaviours as capuchins. Capuchins explore objects in ways that allow them to perceive invariant properties (e.g. mass) of objects, enabling selection of objects for specific uses. We predict that species that use tools will generate behaviours that reveal invariant properties of objects such as mass; species that do not use tools are less likely to explore objects in this way. The precision with which individuals can judge invariant properties may differ considerably, and this also should predict prevalence of tool use across species. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Wild bearded capuchins, Cebus libidinosus, in Fazenda Boa Vista, Brazil crack tough palm nuts using hammer stones. We analysed the contribution of intrinsic factors (body weight, behaviour), size of the nuts and the anvil surface (flat or pit) to the efficiency of cracking. We provided capuchins with local palm nuts and a single hammer stone at an anvil. From video we scored the capuchins` position and actions with the nut prior to each strike, and outcomes of each strike. The most efficient capuchin opened 15 nuts per 100 strikes (6.6 strikes per nut). The least efficient capuchin that succeeded in opening a nut opened 1.32 nuts per 100 strikes (more than 75 strikes per nut). Body weight and diameter of the nut best predicted whether a capuchin would crack a nut on a given strike. All the capuchins consistently placed nuts into pits. To provide an independent analysis of the effect of placing the nut into a pit, we filmed an adult human cracking nuts on the same anvil using the same stone. The human displaced the nut on proportionally fewer strikes when he placed it into a pit rather than on a flat surface. Thus the capuchins placed the nut in a more effective location on the anvil to crack it. Nut cracking as practised by bearded capuchins is a striking example of a plastic behaviour where costs and benefits vary enormously across individuals, and where efficiency requires years to attain. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chimpanzees have been the traditional referential models for investigating human evolution and stone tool use by hominins. We enlarge this comparative scenario by describing normative use of hammer stones and anvils in two wild groups of bearded capuchin monkeys (Cebus libidinosus) over one year. We found that most of the individuals habitually use stones and anvils to crack nuts and other encased food items. Further, we found that in adults (1) males use stone tools more frequently than females, (2) males crack high resistance nuts more frequently than females, (3) efficiency at opening a food by percussive tool use varies according to the resistance of the encased food, (4) heavier individuals are more efficient at cracking high resistant nuts than smaller individuals, and (5) to crack open encased foods, both sexes select hammer stones on the basis of material and weight. These findings confirm and extend previous experimental evidence concerning tool selectivity in wild capuchin monkeys (Visalberghi et al., 2009b; Fragaszy et al., 2010b). Male capuchins use tools more frequently than females and body mass is the best predictor of efficiency, but the sexes do not differ in terms of efficiency. We argue that the contrasting pattern of sex differences in capuchins compared with chimpanzees, in which females use tools more frequently and more skillfully than males, may have arisen from the degree of sexual dimorphism in body size of the two species, which is larger in capuchins than in chimpanzees. Our findings show the importance of taking sex and body mass into account as separate variables to assess their role in tool use. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Appreciation of objects` affordances and planning is a hallmark of human technology. Archeological evidence suggests that Pliocene hominins selected raw material for tool making [1, 2]. Stone pounding has been considered a precursor to tool making [3, 4], and tool use by living primates provides insight into the origins of material selection by human ancestors. No study has experimentally investigated selectivity of stone tools in wild animals, although chimpanzees appear to select stones according to properties of different nut species [5, 6]. We recently discovered that wild capuchins with terrestrial habits [7] use hammers to crack open nuts on anvils [8-10]. As for chimpanzees, examination of anvil sites suggests stone selectivity [11], but indirect evidence cannot prove it. Here, we demonstrate that capuchins, which last shared a common ancestor with humans 35 million years ago, faced with stones differing in functional features (friability and weight) choose, transport, and use the effective stone to crack nuts. Moreover, when weight cannot be judged by visual attributes, capuchins act to gain information to guide their selection. Thus, planning actions and intentional selection of tools is within the ken of monkeys and similar to the tool activities of hominins and apes.
Resumo:
Wild bearded capuchins (Cebus libidinosus, quadrupedal, medium-sized monkeys) crack nuts using large stones. We examined the kinematics and energetics of the nut-cracking action of two adult males and two adult females. From a bipedal stance, the monkeys raised a heavy hammer stone (1.46 and 1.32 kg, from 33 to 77% of their body weight) to an average height of 0.33 m, 60% of body length. Then, they rapidly lowered the stone by flexing the lower extremities and the trunk until the stone contacted the nut. A hit consisting of an upward phase and a downward phase averaged 0.74 s in duration. The upward phase lasted 69% of hit duration. All subjects added discernable energy to the stone in the downward phase. The monkeys exhibited individualized kinematic strategies, similar to those of human weight lifters. Capuchins illustrate that human-like bipedal stance and large body size are unnecessary to break tough objects from a bipedal position. The phenomenon of bipedal nut-cracking by capuchins provides a new comparative reference point for discussions of percussive tool use and bipedality in primates. Am J Phys Anthropol 138:210-220, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
How do capuchin monkeys learn to use stones to crack open nuts? Perception-action theory posits that individuals explore producing varying spatial and force relations among objects and surfaces, thereby learning about affordances of such relations and how to produce them. Such learning supports the discovery of tool use. We present longitudinal developmental data from semifree-ranging tufted capuchin monkeys (Cebus apella) to evaluate predictions arising from Perception-action theory linking manipulative development and the onset of tool-using. Percussive actions bringing an object into contact with a surface appeared within the first year of life. Most infants readily struck nuts and other objects against stones or other surfaces from 6 months of age, but percussive actions alone were not sufficient to produce nut-cracking sequences. Placing the nut on the anvil surface and then releasing it, so that it could be struck with a stone, was the last element necessary for nut-cracking to appear in capuchins. Young chimpanzees may face a different challenge in learning to crack nuts: they readily place objects on surfaces and release them, but rarely vigorously strike objects against surfaces or other objects. Thus the challenges facing the two species in developing the same behavior (nut-cracking using a stone hammer and an anvil) may be quite different. Capuchins must inhibit a strong bias to hold nuts so that they can release them; chimpanzees must generate a percussive action rather than a gentle placing action. Generating the right actions may be as challenging as achieving the right sequence of actions in both species. Our analysis suggests a new direction for studies of social influence on young primates learning sequences of actions involving manipulation of objects in relation to surfaces.
Resumo:
Nutcracking capuchins are mentioned in reports dating as far back as the sixteenth century,(1,2) as well as in Brazilian folklore.(3) However, it was barely a decade ago that primatologists ""discovered"" the spontaneous use of stones to crack nuts in a semi-free ranging group of tufted capuchin monkeys. Since then, we have found several more capuchin populations in savanna-like environments which(5-7) employ this form of tool use. The evidence so far only weakly supports geneti cally based behavioral differences between populations and does not suggest that dietary pressures in poor environments are proximate determinants of the likelihood of tool use. Instead, tool use within these capuchin populations seems to be a behavioral tradition that is socially learned and is primarily associated with more terrestrial habits. However, differences in the diversity of ""tool kits"" between populations remain to be understood.
Resumo:
The competitive regime faced by individuals is fundamental to modelling the evolution of social organization. In this paper, we assess the relative importance of contest and scramble food competition on the social dynamics of a provisioned semi-free-ranging Cebus apella group (n=18). Individuals competed directly for provisioned and clumped foods. Effects of indirect competition were apparent with individuals foraging in different areas and with increased group dispersion during periods of low food abundance. We suggest that both forms of competition can act simultaneously and to some extent synergistically in their influence on social dynamics; the combination of social and ecological opportunities for competition and how those opportunities are exploited both influence the nature of the relationships within social groups of primates and underlie the evolved social structure. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
Are wild bearded capuchin monkeys selective about where they place nuts on anvils, specifically the anvil pits, during nut cracking? In the present study, we examined (1) whether capuchins` preferences for particular pits are influenced by the effectiveness of the pit in cracking the nut and/or by the stability of the nut during striking, (2) how capuchins detect the affordances of novel pits and (3) the influence of social context on their selections. Anvil pits varied in horizontal dimension (small, medium and large) in experiment 1 and in depth (shallow, medium and deep) in experiment 2. In both experiments, three different pits were simultaneously presented, each on one anvil. We coded the capuchins` actions with the nut in each pit, and recorded the outcome of each strike. In both experiments, capuchins preferred the most effective pit, but not the most stabilizing pit, based on the number of first strikes, total strikes and nuts cracked. Their choice also reflected where the preceding individual had last struck. The capuchins explored the pits indirectly, placing nuts in them and striking nuts with a stone. The preference for pits was weaker than the preference for nuts and stones shown previously with the same monkeys. Our findings suggest that detecting affordances of pits through indirect action is less precise than through direct action, and that social context may also influence selection. We show that field experiments can demonstrate embodied cognition in species-typical activities in natural environments. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. Am. J. Primatol. 73:189-196, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
To determine whether tool use varied in relation to food availability in bearded capuchin monkeys, we recorded anvil and stone hammer use in two sympatric wild groups, one of which was provisioned daily, and assessed climatic variables and availability of fruits, invertebrates and palm nuts. Capuchins used tools to crack open encased fruits, mostly palm nuts, throughout the year. Significant differences between wet and dry seasons were found in rainfall, abundance of invertebrates and palm nuts, but not in fruit abundance. Catule nuts were more abundant in the dry season. We tested the predictions of the necessity hypothesis (according to which tool use is maintained by sustenance needs during resource scarcity) and of the opportunity hypothesis (according to which tool use is maintained by repeated exposure to appropriate ecological conditions, such as preferred food resources necessitating the use of tools). Our findings support only the opportunity hypothesis. The rate of tool use was not affected by provisioning, and the monthly rate of tool use was not correlated with the availability of fruits and invertebrates. Conversely, all capuchins cracked food items other than palm nuts (e.g. cashew nuts) when available, and adult males cracked nuts more in the dry season when catule nuts (the most common and exploited nut) are especially abundant. Hence, in our field site capuchins use tools opportunistically. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The frequency of anointing bouts and the materials used for self- and social anointing vary across capuchin species in captivity, but there is little published data on capuchin anointing in the wild. Here we present previously unpublished data on anointing behaviors from capuchin monkey populations at ten different field sites and incorporate these data into a review of the anointing literature for captive and wild capuchins. Using a comparative phylogenetic framework, we test four hypotheses derived primarily from captive literature for variation in anointing between wild untufted capuchins (Cebus) and tufted capuchins (Sapajus), including that (1) the frequency of anointing is higher in Cebus, (2) Cebus uses a higher proportion of plant species to insect species for anointing compared with Sapajus, (3) anointing material diversity is higher in Cebus, and (4) social indices of anointing are higher in Cebus. We found that wild Cebus anoints more with plant parts, including fruits, whereas wild Sapajus anoints more with ants and other arthropods. Cebus capucinus in particular uses more plant species per site for anointing compared with other capuchins and may specialize in anointing as an activity independent from foraging, whereas most other capuchin species tend to eat the substances they use for anointing. In agreement with captive studies, we found evidence that wild Cebus anoints at a significantly higher frequency than Sapajus. However, contrary to the captive literature, we found no difference in the range of sociality for anointing between Cebus and Sapajus in the wild. We review anointing in the context of other Neotropical primate rubbing behaviors and consider the evidence for anointing as self-medication; as a mechanism for enhanced sociality; and as a behavioral response to chemical stimuli. Am. J. Primatol. 74:299314, 2012. (c) 2011 Wiley Periodicals, Inc.