122 resultados para Cadence
Resumo:
Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.
Resumo:
The somatosensory system plays an important role in balance control and age-related changes to this system have been implicated in falls. Parkinson’s disease (PD) is a chronic and progressive disease of the brain, characterized by postural instability and gait disturbance. Previous research has shown that deficiencies in somatosensory feedback may contribute to the poorer postural control demonstrated by PD individuals. However, few studies have comprehensively explored differences in somatosensory function and postural control between PD participants and healthy older individuals. The soles of the feet contain many cutaneous mechanoreceptors that provide important somatosensory information sources for postural control. Different types of insole devices have been developed to enhance this somatosensory information and improve postural stability, but these devices are often too complex and expensive to integrate into daily life. Textured insoles provide a more passive intervention that may be an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. However, to date, there has been little work conducted to test the efficacy of enhanced somatosensory input induced by textured insoles in both healthy and PD populations during standing and walking. Therefore, the aims of this thesis were to determine: 1) whether textured insole surfaces can improve postural stability by enhancing somatosensory information in younger and older adults, 2) the differences between healthy older participants and PD participants for measures of physiological function and postural stability during standing and walking, 3) how changes in somatosensory information affect postural stability in both groups during standing and walking; and 4), whether textured insoles can improve postural stability in both groups during standing and walking. To address these aims, Study 1 recruited seven older individuals and ten healthy young controls to investigate the effects of two textured insole surfaces on postural stability while performing standing balance tests on a force plate. Participants were tested under three insole surface conditions: 1) barefoot; 2) standing on a hard textured insole surface; and 3), standing on a soft textured insole surface. Measurements derived from the centre of pressure displacement included the range of anterior-posterior and medial-lateral displacement, path length and the 90% confidence elliptical area (C90 area). Results of study 1 revealed a significant Group*Surface*Insole interaction for the four measures. Both textured insole surfaces reduced postural sway for the older group, especially in the eyes closed condition on the foam surface. However, participants reported that the soft textured insole surface was more comfortable and, hence, the soft textured insoles were adopted for Studies 2 and 3. For Study 2, 20 healthy older adults (controls) and 20 participants with Parkinson’s disease were recruited. Participants were evaluated using a series of physiological assessments that included touch sensitivity, vibratory perception, and pain and temperature threshold detection. Furthermore, nerve function and somatosensory evoked potentials tests were utilized to provide detailed information regarding peripheral nerve function for these participants. Standing balance and walking were assessed on different surfaces using a force plate and the 3D Vicon motion analysis system, respectively. Data derived from the force plate included the range of anterior-posterior and medial-lateral sway, while measures of stride length, stride period, cadence, double support time, stance phase, velocity and stride timing variability were reported for the walking assessment. The results of this study demonstrated that the PD group had decrements in somatosensory function compared to the healthy older control group. For electrodiagnosis, PD participants had poorer nerve function than controls, as evidenced by slower nerve conduction velocities and longer latencies in sural nerve and prolonged latency in the P37 somatosensory evoked potential. Furthermore, the PD group displayed more postural sway in both the anterior-posterior and medial-lateral directions relative to controls and these differences were increased when standing on a foam surface. With respect to the gait assessment, the PD group took shorter strides and had a reduced stride period compared with the control group. Furthermore, the PD group spent more time in the stance phase and had increased cadence and stride timing variability than the controls. Compared with walking on the firm surface, the two groups demonstrated different gait adaptations while walking on the uneven surface. Controls increased their stride length and stride period and decreased their cadence, which resulted in a consistent walking velocity on both surfaces. Conversely, while the PD patients also increased their stride period and decreased their cadence and stance period on the uneven surface, they did not increase their stride length and, hence walked slower on the uneven surface. In the PD group, there was a strong positive association between decreased somatosensory function and decreased clinical balance, as assessed by the Tinetti test. Poorer somatosensory function was also strongly positively correlated with the temporospatial gait parameters, especially shorter stride length. Study 3 evaluated the effects of manipulating the somatosensory information from the plantar surface of the feet using textured insoles in the same populations assessed in Study 2. For this study, participants performed the standing and walking balance tests under three footwear conditions: 1) barefoot; 2) with smooth insoles; and 3), with textured insoles. Standing balance and walking were evaluated using a force plate and a Vicon motion analysis system and the data were analysed in the same way outlined for Study 2. The findings showed that the smooth and textured insoles caused different effects on postural control during both the standing and walking trials. Both insoles decreased medial-lateral sway to the same level on the firm surface. The greatest benefits were observed in the PD group while wearing the textured insole. When standing under a more challenging condition on the foam surface with eyes closed, only the textured insole decreased medial-lateral sway in the PD group. With respect to the gait trials, both insoles increased walking velocity, stride length and stride time and decreased cadence, but these changes were more pronounced for the textured insoles. The effects of the textured insoles were evident under challenging conditions in the PD group and increased walking velocity and stride length, while decreasing cadence. Textured insoles were also effective in reducing the time spent in the double support and stance phases of the gait cycle and did not increase stride timing variability, as was the case for the smooth insoles for the PD group. The results of this study suggest that textured insoles, such as those evaluated in this research, may provide a low-cost means of improving postural stability in high-risk groups, such as people with PD, which may act as an important intervention to prevent falls.
Consecutive days of cold water immersion: effects on cycling performance and heart rate variability.
Resumo:
We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.
Resumo:
Purpose This study explores recent claims that humans exhibit a minimum cost of transport (CoTmin) for running which occurs at an intermediate speed, and assesses individual physiological, gait and training characteristics. Methods Twelve healthy participants with varying levels of fitness and running experience ran on a treadmill at six self-selected speeds in a discontinuous protocol over three sessions. Running speed (km[middle dot]hr-1), V[spacing dot above]O2 (mL[middle dot]kg-1[middle dot]km-1), CoT (kcal[middle dot]km-1), heart rate (beats[middle dot]min-1) and cadence (steps[middle dot]min-1) were continuously measured. V[spacing dot above]O2 max was measured on a fourth testing session. The occurrence of a CoTmin was investigated and its presence or absence examined with respect to fitness, gait and training characteristics. Results Five participants showed a clear CoTmin at an intermediate speed and a statistically significant (p < 0.05) quadratic CoT-speed function, while the other participants did not show such evidence. Participants were then categorized and compared with respect to the strength of evidence for a CoTmin (ClearCoTmin and NoCoTmin). The ClearCoTmin group displayed significantly higher correlation between speed and cadence; more endurance training and exercise sessions per week; than the NoCoTmin group; and a marginally non-significant but higher aerobic capacity. Some runners still showed a CoTmin at an intermediate speed even after subtraction of resting energy expenditure. Conclusion The findings confirm the existence of an optimal speed for human running, in some but not all participants. Those exhibiting a COTmin undertook a higher volume of running, ran with a cadence that was more consistently modulated with speed, and tended to be aerobically fitter. The ability to minimise the energetic cost of transport appears not to be ubiquitous feature of human running but may emerge in some individuals with extensive running experience.
Resumo:
There is an increasing desire and emphasis to integrate assessment tools into the everyday training environment of athletes. These tools are intended to fine-tune athlete development, enhance performance and aid in the development of individualised programmes for athletes. The areas of workload monitoring, skill development and injury assessment are expected to benefit from such tools. This paper describes the development of an instrumented leg press and its application to testing leg dominance with a cohort of athletes. The developed instrumented leg press is a 45° reclining sled-type leg press with dual force plates, a displacement sensor and a CCD camera. A custom software client was developed using C#. The software client enabled near-real-time display of forces beneath each limb together with displacement of the quad track roller system and video feedback of the exercise. In recording mode, the collection of athlete particulars is prompted at the start of the exercise, and pre-set thresholds are used subsequently to separate the data into epochs from each exercise repetition. The leg press was evaluated in a controlled study of a cohort of physically active adults who performed a series of leg press exercises. The leg press exercises were undertaken at a set cadence with nominal applied loads of 50%, 100% and 150% of body weight without feedback. A significant asymmetry in loading of the limbs was observed in healthy adults during both the eccentric and concentric phases of the leg press exercise (P < .05). Mean forces were significantly higher beneath the non-dominant limb (4–10%) and during the concentric phase of the muscle action (5%). Given that symmetrical loading is often emphasized during strength training and remains a common goal in sports rehabilitation, these findings highlight the clinical potential for this instrumented leg press system to monitor symmetry in lower-limb loading during progressive strength training and sports rehabilitation protocols.
Resumo:
Typically, the walking ability of individuals with a transfemoral amputation (TFA) can be represented by the speed of walking (SofW) obtained in experimental settings. Recent developments in portable kinetic systems allow assessing the level of activity of TFA during actual daily living outside the confined space of a gait lab. Unfortunately, only minimal spatio-temporal characteristics could be extracted from the kinetic data including the cadence and the duration on gait cycles. Therefore, there is a need for a way to use some of these characteristics to assess the instantaneous speed of walking during daily living. The purpose of the study was to compare several methods to determine SofW using minimal spatial gait characteristics.
Resumo:
The objectives of this study were (A) to record the inner prosthesis loading during activities of daily living (ADL), (B) to present a set of variables comparing loading data, and (C) to provide an example of characterisation of two prostheses. The load was measured at 200 Hz using a multi-axial transducer mounted between the residuum and the knee of an individual with unilateral transfemoral amputation fitted with a bone-anchored prosthesis. The load was measured while using two different prostheses including a mechanically (PRO1) and a microprocessor controlled (PRO2) knee during six ADL. The characterisation of prosthesis was achieved using a set of variables split into four categories, including temporal characteristics, maximum loading, loading slopes and impulse. Approximately 360 gait cycles were analysed for each prosthesis. PRO1 showed a cadence improved by 19% and 7%, a maximum force on the long axis reduced by 11% and 19%, as well as an impulse reduced by 32% and 15% during descent of incline and stairs compared to PRO2, respectively. This work confirmed that the proposed apparatus and characterisation can reveal how changes of prosthetic components are translated into inner loading.
Resumo:
Measurement of tendon loading patterns during gait is important for understanding the pathogenesis of tendon "overuse" injury. Given that the speed of propagation of ultrasound in tendon is proportional to the applied load, this study used a noninvasive ultrasonic transmission technique to measure axial ultrasonic velocity in the right Achilles tendon of 27 healthy adults (11 females and 16 males; age, 26 ± 9 years; height, 1.73 ± 0.07 m; weight, 70.6 ± 21.2 kg), walking at self-selected speed (1.1 ± 0.1 m/s), and running at fixed slow speed (2 m/s) on a treadmill. Synchronous measures of ankle kinematics, spatiotemporal gait parameters, and vertical ground reaction forces were simultaneously measured. Slow running was associated with significantly higher cadence, shorter step length, but greater range of ankle movement, higher magnitude and rate of vertical ground reaction force, and higher ultrasonic velocity in the tendon than walking (P < 0.05). Ultrasonic velocity in the Achilles tendon was highly reproducible during walking and slow running (mean within-subject coefficient of variation < 2%). Ultrasonic maxima (P1, P2) and minima (M1, M2) were significantly higher and occurred earlier in the gait cycle (P1, M1, and M2) during running than walking (P < 0.05). Slow running was associated with higher and earlier peaks in loading of the Achilles tendon than walking.
Resumo:
The outer atmosphere of the sun called the corona has been observed during total solar eclipse for short periods (typically <6 min), from as early as the eighteenth century. In the recent past, space-based instruments have permitted us to study the corona uninterruptedly. In spite of these developments, the dynamic corona and its high temperature (1-2 million K) are yet to be Ally understood. It is conjectured that their dynamic nature and associated energetic events are possible reasons behind the high temperature. In order to study these in detail, a visible emission line space solar coronagraph is being proposed as a payload under the small-satellite programme of the Indian Space Research Organisation. The satellite is named as Aditya-1 and the scientific objectives of this payload are to study: (i) the existence of intensity oscillations for the study of wave-driven coronal heating; (ii) the dynamics and formation of coronal loops and temperature structure of the coronal features; (iii) the origin, cause and acceleration of coronal mass ejections (CMEs) and other solar active features, and (iv) coronal magnetic field topology and three-dimensional structures of CMEs using polarization information. The uniqueness of this payload compared to previously flown space instruments is as follows: (a) observations in the visible wavelength closer to the disk (down to 1.05 solar radii); (b) high time cadence capability (better than two-images per second), and (c) simultaneous observations of at least two spectral windows all the time and three spectral windows for short durations.
Resumo:
This paper presents the design of the area optimized integer two dimensional discrete cosine transform (2-D DCT) used in H.264/AVC codecs. The 2-D DCT calculation is performed by utilizing the separability property, in such a way that 2-D DCT is divided into two 1-D DCT calculation that are joined through a common memory. Due to its area optimized approach, the design will find application in mobile devices. Verilog hardware description language (HDL) in cadence environment has been used for design, compilation, simulation and synthesis of transform block in 0.18 mu TSMC technology.
Resumo:
Nearly all young stars are variable, with the variability traditionally divided into two classes: periodic variables and aperiodic or "irregular" variables. Periodic variables have been studied extensively, typically using periodograms, while aperiodic variables have received much less attention due to a lack of standard statistical tools. However, aperiodic variability can serve as a powerful probe of young star accretion physics and inner circumstellar disk structure. For my dissertation, I analyzed data from a large-scale, long-term survey of the nearby North America Nebula complex, using Palomar Transient Factory photometric time series collected on a nightly or every few night cadence over several years. This survey is the most thorough exploration of variability in a sample of thousands of young stars over time baselines of days to years, revealing a rich array of lightcurve shapes, amplitudes, and timescales.
I have constrained the timescale distribution of all young variables, periodic and aperiodic, on timescales from less than a day to ~100 days. I have shown that the distribution of timescales for aperiodic variables peaks at a few days, with relatively few (~15%) sources dominated by variability on tens of days or longer. My constraints on aperiodic timescale distributions are based on two new tools, magnitude- vs. time-difference (Δm-Δt) plots and peak-finding plots, for describing aperiodic lightcurves; this thesis provides simulations of their performance and presents recommendations on how to apply them to aperiodic signals in other time series data sets. In addition, I have measured the error introduced into colors or SEDs from combining photometry of variable sources taken at different epochs. These are the first quantitative results to be presented on the distributions in amplitude and time scale for young aperiodic variables, particularly those varying on timescales of weeks to months.
Resumo:
A constituição de uma base de dados normativa da marcha é essencial para o diagnóstico e o tratamento de padrões atípicos da locomoção (SUTHERLAND et al., 1997). Não obstante, são escassas as informações relativas aos padrões normais da marcha de crianças (GANLEY e POWERS, 2005), carência ainda mais evidente no tocante à produção acadêmica sobre o padrão biomecânico da locomoção da população de crianças brasileiras. Nesse sentido, especialistas em análise de marcha alertam para o fato que crianças de diferentes populações podem exibir diferentes padrões de marcha de acordo com os grupos étnicos das quais foram extraídas (MORENO-HERNÁNDEZ et al., 2010). Assim sendo, o objetivo do presente estudo foi descrever o padrão biomecânico da marcha de crianças hígidas brasileiras entre 6 e 11 anos de idade. Cento e vinte e duas crianças hígidas, entre seis e 11 anos de idade foram aleatoriamente recrutadas de um universo de 328 alunos. Os sujeitos foram alocados em três grupos etários: Grupo 1 (6-7 anos), Grupo 2 (8-9 anos) e Grupo 3 (10-11 anos). Para o registro das imagens das marchas das crianças foi utilizado um sistema de captura bidimensional de movimento a uma freqüência de aquisição de 30 Hz, composto por uma câmera Sony modelo HC 46 posicionada ortogonalmente a 6 metros da pista. Marcadores esféricos reflexivos de 20mm de diâmetro foram fixados em ambos os lados do corpo dos participantes. Os valores em bruto das coordenadas dos marcadores foram transformadas em coordenadas globais 2D (CALDWELL et al., 2004) e processadas no software SkillSpector (Versão 1.0). A estratégia de Hof (1996) foi utilizada para a normalização dos dados da marcha. Os comprimentos de passo e passada apresentaram uma tendência de aumento com o avanço da idade até 8-9 anos de idade, ao passo que a cadência dos passos apresentou uma tendência de diminuição até o mesmo período. Os números não-dimensionais não apresentaram qualquer tendência de alteração com o avanço da idade. Os três grupos etários apresentaram trajetórias angulares articulares semelhantes. O presente estudo constitui ação pioneira no que tange à descrição do padrão cinemático da marcha de crianças hígidas brasileiras entre 6 e 11 anos de idade. Assim sendo, consideramos que um primeiro passo foi dado no sentido da constituição de uma base de dados normativa da locomoção desses indivíduos.
Resumo:
基于CMOS器件的离散性机理及误差消除对策,研究了高速、高精度嵌入式CMOS数/模转换器(DAC)IP核的设计与实现。采用行、列独立译码的二次中心对称电流源矩阵结构,优化了电流源开关电路结构与开关次序;利用Cadence的Skill语言独立开发电流源矩阵的版图排序和布线方法。在0.6μm N阱CMOS工艺平台下,12-bitDAC的微分线性误差和积分线性误差分别为1LSB和1.5LSB,在采样率为150MHz、工作电源为3.3V时的平均耗为140mW。流片一次成功,主要性能指标满足设计要求。
Resumo:
大运算量的科学计算以及高速实时信号处理靠传统的单处理机系统已无法完成,必须通过并行处理技术实现,特别是新一代的雷达信号处理系统功能强且结构和信号处理方式都很复杂,对实时性、运算精度、动态范围和数据吞吐量提出了更高要求,采用每秒几十亿至几百亿次浮点运算速度的大规模实时并行处理系统势在必行。 本论文对高端信号处理系统进行了较为深入的研究,在此基础上设计并实现了基于PowerPC的信号处理系统,以该系统为平台,研究了系统设计中的难点和热点问题,并提出了一些实现信号处理系统中关键技术的新方法。 通过对信号处理系统结构的研究,本文提出了基于SMP-Cluster架构的总体设计方案,设计并实现了SMP架构的PowerPC信号处理节点板,符合PICMG 2.16标准的千兆以网交换板,千兆高速背板和机箱管理模块。对信号处理硬件系统进行了设计、焊接、组装和调试;设计、编写了信号处理中的相关软件系统;移植了实时操作系统,编写了底层驱动。 本文在系统的研究开发过程中,对其中的关键技术运用了一些有一定创新性的设计和实现方法: 1、针对雷达信号处理特点,提出了基于SMP-Cluster架构信号处理系统,使系统扩展性和并行性大大提高; 2、采用PowerPC作为信号处理器,相比DSP,数据吞吐量、处理速度有一定的提高; 3、采用仿真分析方法,结合Cadence PCB工具,解决了高速背板的信号完整性和电源完整性等问题,使背板工作频率能达到3.125G; 4、采用机箱智能管理和热切换,来加强系统的可靠性、机箱管理。 实验表明,本论文所设计和实现的系统能满足海量运算需求,具有高可靠性 高冗余性、强扩展性和可管理性。
Resumo:
嵌入式计算机在通信设备、军事、航空航天等领域有着广泛的应用。高端嵌入式计算机平台的国产化,对促进国内计算机系统向高性能、实时性、低功耗的方向发展,具有重要的意义和军事、民用应用价值。跟踪国外高端嵌入式计算机的发展,研究和研制更能适合我国实际系统需要的高端嵌入式计算机是本科题研究的主要内容。为了更及时的跟踪国外技术的发展,本文研究的侧重点在于如何利用国外的微处理器芯片,开发满足我国特殊需求的嵌入式计算机平台。 本文在分析国内嵌入式计算机特殊需求的基础上,在国内首次提出了基于PowerPC G4的高性能、宽温、低功耗嵌入式计算机的解决方案。研制具有自主知识产权的产品,填补国内在这一应用领域的空白。 如何从硬件设计、底层软件和结构等方面提高嵌入式计算机的高可靠性设计是本文研究的一项重要内容。在硬件设计的基础上,讨论了如何利用边界扫描BIT技术进行板级BIST设计的方法。为了提高设计的效率和一次成功率,如何通过仿真分析方法对嵌入式计算机进行了预设计是本文研究的另一项重要内容。为此,本文在硬件设计过程中分析了高端嵌入式计算机PCB设计中的关键网络,通过SI仿真分析方法,结合Cadence PCB工具,解决了信号完整性和电源完整性等问题。结合所设计的硬件系统,完成底层软件移植和驱动开发和系统的软硬件调试,解决调试中遇到的问题也是嵌入式计算开发过程的一项重要内容。本文利用BDI2000仿真器和Tornado开发环境完成了这一过程。 本论文提出的基于PowerPC的嵌入式计算机采用的是CPCI总线架构,包含多种外部接口,所设计和实现的系统能满足海量运算需求,具有高可靠性、强扩展性和实时性。具有较好的应用前景。