905 resultados para CYTOKINE SIGNALING-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, down-regulation of SOCS-1 decreased the expression of epidermal growth factor receptor ( mainly the phosphorylated-R), Ins-R alpha, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors of several cytokine signal transduction pathways. Their expression is induced by cytokine activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and they act as a negative feedback loop by subsequently inhibiting the JAK/STAT pathway either by direct interaction with activated JAKs or with the receptors. These interactions are mediated at least in part by the SH2 domain of SOCS proteins but these proteins also contain a highly conserved C-terminal homology domain termed the SOCS box. Here we show that the SOCS box mediates interactions with elongins B and C, which in turn may couple SOCS proteins and their substrates to the proteasomal protein degradation pathway. Analogous to the family of F-box-containing proteins, it appears that the SOCS proteins may act as adaptor molecules that target activated cell signaling proteins to the protein degradation pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential regulation of suppressor of cytokine signaling-3 in the liver and adipose tissue of the sheep fetus in late gestation. Am J Physiol Regul Integr Comp Physiol 290: R1044 - R1051, 2006. First published November 10, 2005; doi: 10.1152/ajpregu. 00573.2005. - It is unknown whether the JAK/STAT/suppressor of cytokine signaling-3 (SOCS-3) intracellular signaling pathway plays a role in tissue growth and metabolism during fetal life. We investigated whether there is a differential profile of SOCS-3 expression in the liver and perirenal adipose tissue during the period of increased fetal growth in late gestation and the impact of fetal growth restriction on SOCS-3 expression in the fetal liver. We also determined whether basal SOCS-3 expression in the fetal liver and perirenal adipose tissue is regulated by endogenous fetal prolactin (PRL). SOCS-3 mRNA abundance was higher in the liver than in the pancreas, spleen, and kidney of the sheep fetus during late gestation. In the liver, SOCS-3 mRNA expression was increased (P < 0.05) between 125 (n < 4) and 145 days (n < 7) gestation and lower (P < 0.05) in growth-restricted compared with normally grown fetal sheep in late gestation. The relative expression of SOCS-3 mRNA in the fetal liver was directly related to the mean plasma PRL concentrations during a 48-h infusion of either a dopaminergic agonist, bromocriptine (n < 7), or saline (n < 5), such that SOCS-3 mRNA expression was lower when plasma PRL concentrations decreased below similar to 20 ng/ml [y = 0.99 - (2.47/x) + (4.96/x(2)); r(2) = 0.91, P < 0.0001, n < 12]. No relationship was shown between the abundance of phospho-STAT5 in the fetal liver and circulating PRL. SOCS-3 expression in perirenal adipose tissue decreased (P < 0001) between 90 - 91 (n < 6) and 140 - 145 days (n < 9) gestation and was not related to endogenous PRL concentrations. Thus SOCS-3 is differentially expressed and regulated in key fetal tissues and may play an important and tissue-specific role in the regulation of cellular proliferation and differentiation before birth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolactin and the expression of suppressor of cytokine signaling-3 in the sheep adrenal gland before birth. Am J Physiol Regul Integr Comp Physiol 291: R1399-R1405, 2006. First published June 29, 2006; doi: 10.1152/ajpregu.00252.2006.-The fetal pituitary-adrenal axis plays a key role in the fetal response to intrauterine stress and in the timing of parturition. The fetal sheep adrenal gland is relatively refractory to stimulation in midgestation (90-120 days) before the prepartum activation, which occurs around 135 days gestation (term = 147 +/- 3 days). The mechanisms underlying the switch from adrenal quiescence to activation are unclear. Therefore, we have investigated the expression of suppressor of cytokine signaling-3 (SOCS-3), a putative inhibitor of tissue growth in the fetal sheep adrenal between 50 and 145 days gestation and in the adrenal of the growth-restricted fetal sheep in late gestation. SOCS-3 is activated by a range of cytokines, including prolactin (PRL), and we have, therefore, determined whether PRL administered in vivo or in vitro stimulates SOCS-3 mRNA expression in the fetal adrenal in late gestation. There was a decrease (P < 0.005) in SOCS-3 expression in the fetal adrenal between 54 and 133 days and between 141 and 144 days gestation. Infusion of the dopaminergic agonist, bromocriptine, which suppressed fetal PRL concentrations but did not decrease adrenal SOCS-3 mRNA expression. PRL administration, however, significantly increased adrenal SOCS-3 mRNA expression (P < 0.05). Similarly, there was an increase (P < 0.05) in SOCS-3 mRNA expression in adrenocortical cells in vitro after exposure to PRL (50 ng/ml). Placental and fetal growth restriction had no effect on SOCS-3 expression in the adrenal during late gestation. In summary, the decrease in the expression of the inhibitor SOCS-3 after 133 days gestation may be permissive for a subsequent increase in fetal adrenal growth before birth. We conclude that factors other than PRL act to maintain adrenal SOCS-3 mRNA expression before 133 days gestation but that acute elevations of PRL can act to upregulate adrenal SOCS-3 expression in the sheep fetus during late gestation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that enclogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligo-dendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cupri-zone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase-signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia.

Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro.

SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells.

Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL-10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappa B (NF-kappa B) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In several species including the buffalo cow, prostaglandin (PG) F-2 alpha is the key molecule responsible for regression of corpus luteum (CL). Experiments were carried out to characterize gene expression changes in the CL tissue at various time points after administration of luteolytic dose of PGF(2 alpha) in buffalo cows. Circulating progesterone levels decreased within 1 h of PGF(2 alpha) treatment and evidence of apoptosis was demonstrable at 18 h post treatment. Microarray analysis indicated expression changes in several of immediate early genes and transcription factors within 3 h of treatment. Also, changes in expression of genes associated with cell to cell signaling, cytokine signaling, steroidogenesis, PG synthesis and apoptosis were observed. Analysis of various components of LH/CGR signaling in CL tissues indicated decreased LH/CGR protein expression, pCREB levels and PKA activity post PGF(2 alpha) treatment. The novel finding of this study is the down regulation of CYP19A1 gene expression accompanied by decrease in expression of E-2 receptors and circulating and intra luteal E-2 post PGF(2 alpha) treatment. Mining of microarray data revealed several differentially expressed E-2 responsive genes. Since CYP19A1 gene expression is low in the bovine CL, mining of microarray data of PGF(2 alpha)-treated macaques, the species with high luteal CYP19A1 expression, showed good correlation between differentially expressed E-2 responsive genes between both the species. Taken together, the results of this study suggest that PGF(2 alpha) interferes with luteotrophic signaling, impairs intraluteal E-2 levels and regulates various signaling pathways before the effects on structural luteolysis are manifest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les cytokines jouent un rôle fondamental dans la régulation des processus biologiques via la cascade de signalisation JAK-STAT. Les « Suppressors of Cytokine Signalling » (SOCS), protéines intracellulaires, inhibent la voie JAK-STAT. Plusieurs études supportent leur implication dans des maladies immunitaires, mais peu d’informations sont disponibles sur leur expression par les lymphocytes T humains. Nous postulons que les cytokines Interféron-β(IFN-β) et Interleukine-27 (IL-27), dotées d’un potentiel immuno-régulateur, ont des rôles bénéfiques via l’induction des SOCS. L’impact de l’IFN-β et l’IL-27 sur l’expression des SOCS-1 et SOCS-3 par des cellules T CD8 et CD4 humaines a été étudié en utilisant des cellules sanguines de donneurs sains. L’expression de ces régulateurs a été évaluée aux niveaux de l’ARNm par qRT-PCR et protéique par immunocytochimie. Les SOCS-1 et SOCS-3 ont été rapidement induits en ARNm dans les deux types cellulaires en réponse à l’IFN-β ou l’IL-27 et une augmentation de l’expression a été confirmée au niveau protéique. Afin de mimer les thérapies à base d’IFN-β, les cellules T ont été exposées chroniquement à l’IFN-β. Après chaque ajout de cytokine les cellules T ont augmenté l’expression du SOCS-1, sans moduler le SOCS-3. L’IL-27 a induit les SOCS-1 et SOCS-3 préférentiellement dans les cellules T CD8 ; ceci corrèle avec des résultats du laboratoire démontrant une plus petite expression des récepteurs à l’IL-27 par les lymphocytes T CD4 que les CD8. Notre projet a permis d’élucider l’expression des SOCS dans deux populations de cellules T et de clarifier les mécanismes d’actions de l’IFN-β et l’IL-27.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)