989 resultados para CONTROLLING EXPRESSION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The UME6 gene of Saccharomyces cerevisiae was identified as a mitotic repressor of early meiosis-specific gene expression. It encodes a Zn2Cys6 DNA-binding protein which binds to URS1, a promoter element needed for both mitotic repression and meiotic induction of early meiotic genes. This paper demonstrates that a complete deletion of UME6 causes not only vegetative derepression of early meiotic genes during vegetative growth but also a significant reduction in induction of meiosis-specific genes, accompanied by a severe defect in meiotic progression. After initiating premeiotic DNA synthesis the vast majority of cells (approximately 85%) become arrested in prophase and fail to execute recombination; a minority of cells (approximately 15%) complete recombination and meiosis I, and half of these form asci. Quantitative analysis of the same early meiotic transcripts that are vegetatively derepressed in the ume6 mutant, SPO11, SPO13, IME2, and SPO1, indicates a low level of induction in meiosis above their vegetative derepressed levels. In addition, the expression of later meiotic transcripts, SPS2 and DIT1, is significantly delayed and reduced. The expression pattern of early meiotic genes in ume6-deleted cells is strikingly similar to that of early meiotic genes with promoter mutations in URS1. These results support the view that UME6 and URS1 are part of a developmental switch that controls both vegetative repression and meiotic induction of meiosis-specific genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has long been known that Hox genes are central players in patterning the vertebrate axial skeleton. Extensive genetic studies in the mouse have revealed that the combinatorial activity of Hox genes along the anterior-posterior body axis specifies different vertebral identities. In addition, Hox genes were instrumental for the evolutionary diversification of the vertebrate body plan. In this review, we focus on fundamental questions regarding the intricate mechanisms controlling Hox gene activity. In particular, we discuss the functional relevance of the precise timing of Hox gene activation in the embryo. Moreover, we provide insight into the epigenetic regulatory mechanisms that are likely to control this process and are responsible for the maintenance of spatially restricted Hox expression domains throughout embryonic development. We also analyze how specific features of each Hox protein may contribute to the functional diversity of Hox family. Altogether, the work reviewed here further supports the notion that the Hox program is far more complex than initially assumed. Exciting new findings will surely emerge in the years ahead.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several host-adapted bacterial pathogens contain methyltransferases associated with type III restriction-modification (R-M) systems that are subject to reversible, high-frequency on/off switching of expression (phase variation). To investigate the role of phase-variable expression of R-M systems, we made a mutant strain lacking the methyltransferase (mod) associated with a type III R-M system of Haemophilus influenzae and analyzed its phenotype. By microarray analysis, we identified a number of genes that were either up- or down-regulated in the mod mutant strain. This system reports the coordinated random switching of a set of genes in a bacterial pathogen and may represent a widely used mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results: 8489 transcripts were detected across the two oocyte groups, of which similar to 25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of a-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion: Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of thymic versus peripheral epithelial cells in the negative selection of the peptide-specific CD8 T cell repertoire is still largely unresolved. We have generated TCRb chain transgenic mice in which 20–35% of peripheral CD8 T cells recognize an epitope from a viral, nuclear oncoprotein (human papillomavirus type 16 E7) in the context ofMHC class I, H-2Db. When T cells from these transgenic mice develop through the thymus of a second transgenic mouse expressing E7 from a keratin 14 promoter, no major perturbation to thymic T cell development is observed over a 7 month period. In contrast, peripheral CD8 T cell responses in these same mice (E7TCRxK14E7 double transgenic) become reduced over time. This data suggests that peripheral tolerance mechanisms predominate over thymic negative selection in controlling CD8 T cell responses to this epithelial, nuclear oncoprotein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell proliferative hypo responsiveness, a hallmark of paracoccidioidomycosis immune responses, underlies host`s failure in controlling fungus spread, being reversible with antifungal treatment. The mechanisms leading to this hypoproliferation are not well known. Since costimulatory molecules have been shown to profoundly regulate T-cell immune responses, we investigated the hypothesis that the determinants of the responder versus tolerant state may be the regulated expression of, or signaling by, costimulatory molecules. Expression of CD80, CD86, CD28, CD152, ICOS and PD-1 costimulatory molecules were examined on T-cells and monocytes harvested from stimulated and unstimulated PBMC cultures of active paracoccidioidomycosis patients and healthy individuals cured of past paracoccidioidomycosis. Stimuli were gp43, the immunodominant component of Paracoccidioides brasiliensis, and a Candida antigen. While CD28 expression, critical for optimal T-cell activation, was comparable between patients and controls, CD152, PD-1 and ICOS, which preferentially deliver negative signaling, were overexpressed on patients` stimulated and unstimutated T-cells. PBMC cultures were carried out in presence of the respective blocking antibodies which, however, failed to restore T-cell proliferation. CD80 and CD86 were equally expressed on patients` and controls` monocytes, but overexpressed on patients` T-cells. Blockade with the respective blocking antibodies on day 4 of the culture also did not restore T-cell proliferation, while, on day 0, differentially inhibited Candida and gp43 responses, suggesting that different antigens require different costimulatory pathways for antigen presentation. Our data favors the hypothesis, raised from other foreign antigen models, that prolonged in vivo antigen exposure leads to an adaptive tolerance T-cell state which is hardly reverted in vitro. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elevated plus-maze is an animal model used to study anxiety. In a second session, rats show a reduction in the exploratory behavior even when the two sessions are separated by intervals as large as 7 days. The aim of the present study was to investigate whether the reduction in the exploratory behavior is maintained after intervals larger than 7 days. Additionally, we aimed at investigating eventual correlations between behaviors in the plus-maze and activation of limbic structures as measured by Fos protein expression after the second session. Rats were tested for 5 min in the elevated plus-maze and re-tested 3, 9 or 33 days later. Other groups were tested only once. The rat brains were processed for immunohistochemical detection of Fos protein. The results show a decrease in the open arms exploration in the second trial with intervals of 3, 9 and 33 days. The expression of Fos protein in the piriform cortex, septal nucleus and paraventricular hypothalamic nucleus in the groups tested with intervals of 9 and 33 days were statistically different from the other groups. The alterations observed in exploratory behavior in the second session in the plus-maze did not correlate with Fos expression. In conclusion, although the specific test conditions were sufficient to evoke behavioral alterations in exploration in the elevated plus-maze, they were enough to induce significant Fos protein expression in piriform cortex, septal nucleus and thalamic and hypothalamic paraventricular nuclei but not in other areas such as dorsomedial nucleus of the hypothalamus and amygdala nuclei, known to be also active participants in circuits controlling fear and anxiety. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO240) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO240 is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO, Although VNO240 was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5, This delayed appearance in the accessory olfactory bulb suggests that VNO240 is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb, During the first 2 postnatal weeks, the population of neurones expressing VNO240 spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM, To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO, These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis, Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO240 and NOC-1 increases during postnatal maturation. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica (área de especialização em Biomedicina)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.